Operating System Support for Multimedia:
The Programming Model Matters

John Regehr Michael B. Jones John A. Stankovic
School of Computing Microsoft Research Department of Computer Science
University of Utah Microsoft Corporation University of Virginia
regehr@cs.utah.edu mbj@microsoft.com stankovic@cs.virginia.edu
Abstract tion in mainstream operating systems. Traditional met-

Multimedia is an increasingly important part of the mix fics, one or more of which can be found in almost ev-
of applications that users run on personal computers an@Y research paper on the subject, include run-time effi-
workstations. Research in operating system support fof1€Nncy; fairness, ability to permit tasks to meet deadlines,
multimedia has traditionally been evaluated using met2nd, more recently, energy efficiency. We argue, on the
rics such as fairness, the ability to permit applications togother hand, that the critical metrics are understandability,
meet real-time deadlines, and run-time efficiency. We arPredictability, and ease of use, not only for application
gue, on the other hand, that if advanced scheduling anfl€velopers but also for end users. As systems software
resource management techniques are to be adopted fevelopers we recognize thqt these metrics are difficult
mainstream operating systems, the roles of developer® evaluate. However, we believe that improvements can
and users will have to be considered much more seriP€ made simply by framing the dialogue about multime-
ously than they have been up to this point. Our goa|5dia support in these terms. For example, can developers
are to recast the dialogue about multimedia schedulingéasonably be expected to provide the information that
in these terms and to inform the reader about the state df€ System needs? Will users be confronted with new
the art in this area. To accomplish this we survey exist-2nd confusing policy choices to make?

ing multimedia scheduling techniques and analyze them 10 be widely accepted a multimedia technology must
in terms of things that they make easy and difficult for Present each of three different groups — operating sys-

whom, including the associated programming tasks. ~{em vendors, application developers, and end users —
with a good value proposition. The rest of this article

1 Introduction defends the thesis thtte programming model matters
where a programming model is the set of abstractions

Personal computers running Windows XP, MacOS X,anq functionality presented by a system to application
and Linux are capable of performing a variety of developers.

multimedia tasks — accurately recognizing continuous

speech, encoding captured television signals and storin

them on disk, acting as professional-quality electronicg Multimedia System Requirements

musical instruments, and rendering convincing virtualA 9eneral-purpose operating syst¢@POS) for a per-
worlds — all in real time. Furthermore, personal com- sonal computer or workstation must provide fast re-
puters costing less than $1000 are capable of performSPonse time for interactive applications, high through-
ing several of these tasks at once if the operating sysPut for batch applications, and some amount of fairness
tem manages resources well. The increasing pervasiv@-etwee” applications. Although there is tension between
ness of multimedia applications, and problems Supportthese requirements the lack of meaningful changes to the
ing them on traditional systems, have motivated manydesign of time-sharing schedulers in recent years indi-
research papers over the past decade. cates that they are working well enough.

This article serves two purposes. First, it surveys .The goal of a hard regl-time system is similarly unam-
existing processor scheduling techniques for supportin@'9U0U53 all hard deadlines must be met. The standard
multimedia on general-purpose operating systems. se&ngineering practice for building these systems is to stat-
ond, it advances and supports the thesis that traditiondfally determine resource requirements and schedulabil-
technical metrics for evaluating these systems, while imity, s well as over-provisioning resources as a hedge
portant, are not going to decide whether or not thes@gainst unforeseen situations.
techniques are successful in the long run through adop- Not surprisingly, there are many systems whose re-

quirements fall between these two extremes. These aii@ costs is too high, application developers will assume
soft real-time systems: they need to support a dynamithat contention does not exist. Rather than using features
mix of applications, some of which must perform com- provided by the scheduler, they will force their users to
putations at specific times. Missed deadlines are undemanually eliminate contention — reducing the value po-
sirable but not catastrophic. tentially available to end users.

We have identified four basic requirements that theR3: Provide a consistent, intuitive user interfaddsers
“ideal” multimedia operating system should meet. Al- should be able to easily express their preferences to the
though itis unlikely that any single system or schedulingsystem and the system should behave predictably in re-
policy will be able to meet all of these requirements for sponse to user actions. Also, it should give the user (or
all types of applications, the requirements are importansoftware operating on the user’s behalf) feedback about
because they describe the space within which multimethe resource usage of existing applications and, when ap-
dia systems are designed. A particular set of prioriti-plicable, the likely effects of future actions.
zations among the requirements will result in a specificR4: Run a mix of applications that maximizes overall
set of tradeoffs; these tradeoffs will constrain the desigrvalue. Unlike hard real-time systems, PCs and worksta-
of the user interface and the application programmingions cannot overprovision the CPU resource; demand-
model. ing multimedia applications tend to use all available cy-
R1: Meet the scheduling requirements of coexisting, in-cles. During overload the multimedia OS should run a
dependently written, possibly misbehaving soft real-timemix of applications that maximizes overall value. This
applications. is the “holy grail” of resource management and is prob-

The CPU requirements of a real-time application areably impossible in practice since value is a subjective
often specified in terms of aamountandperiod where measure of the utility of an application, running at a par-
the application must receive the amount of CPU timeticular time, to a particular user. Still, this requirement
during each period of time. No matter how schedulingis a useful one since it provides a basis for evaluating
requirements are specified, the scheduler must be abRifferent systems.
to meet them without the benefit of global coordination

among application developers — multimedia operating3 Multimedia Scheduling Strategies
systems arepen systemm the sense that applications o, srvey of scheduling support for multimedia appli-

are Wr|ttehn Indgper;dfantly.f he schedul isbehavi cations distinguishes between steady-state allocation of
F:'om't N pg;;nt 0 V|e\()v ofthe sc iedulera misbe a;'ngCPU time and system behavior during application mode
application willoverrunby attempting to use more CPU changes (when an application starts, terminates, or has a

time _than was allocated to it. Schedulers that prowdech‘,:mge of requirements). In both parts of the survey key
load isolationguarantee a minimum amount or propor- questions are:

tion of CPU time to each multimedia application even
if other applications overrun, e.g. by entering an infinite ¢ What information do applications have to provide

loop. to the system in order to use the programming
R2: Minimize development effort by providing abstrac- model?

tions and guarantees that are a good match for applica- .
tions’ requirements. e What guarantees does the system make to applica-

In the past, personal computers were dedicated to a tions?
single application at a time. Developers did not need
to interact much with OS resource allocation policies.
This is no longer the case. For example, it is possi-
ble to listen to music while playing a game, burn a CD e Whose jobs does it make easier (and harder)?
while watching a movie, or encode video from a capture]]]
card while using speech recognition software. There- ® How comprehensible and usable is the resulting
fore, an important role of the designers of soft real-time ~ Programming interface?
systems is to make it as easy as possible for develop-
ers to create applications that gracefully share machine
resources with other applications. We propose the fol-
lowing test: compare the difficulty of writing an appli- 3.1 Steady State Allocation of CPU Time

cation for a given multimedia scheduler to the difficulty £, 640k scheduler, we provide a brief description, give
of writing the same application if it could assume that examples of systems that implement it, and examine

itis the highest priority application in the system (thus hich of the requirements from Section 2 the scheduler
having the machine logically to itself). If the difference fulfills. These characteristics are summarized in Table 1.

e What kinds of applications does the programming
model support well (and poorly)?

e How comprehensible and usable is the resulting
user interface?

programming model | examples load prior knowledge | support for varying
isolation latency requirementsp

rate-monotonic and Linux, RTLinux, Solaris, isolated from | priority yes

other static priority Windows XP lower priority

proportional share BVT, EEVDF, SMART strong share (and latency) varies

CPU reservations Nemesis, Rialto, Spring strong period, amount yes

earliest deadline first | Rialto, SMART, Spring strong / weak| deadline, amount | yes

feedback control FC-EDF, SWIFT varies metric, set point | varies

hierarchical scheduling CPU Inheritance, SFQ, HL$ varies varies varies

Table 1: Characterization of soft real-time schedulers.

Static Priority and Rate Monotonic Scheduling cation decreases as the total number of shares increases.
Quantum size is chosen to provide a good balance be-
Sween allocation error and system overhead.

Other than Lottery scheduling [18], which is a ran-
omized algorithm, all proportional share algorithms

The uniprocessor real-time scheduling problem has e
sentially been solved bstatic priority analysig1] when
the set of applications and their periods and amounts arg

known in advance, and when applications can be truste re based on some sort viftual clock— a per-thread

not to overrun. counter that the scheduler increments in proportion to

.Popular g_eneral—purpose opergting SVS‘GT‘”S such 3Re amount of CPU time received by the thread and in
Linux and Windows XP extend their time-sharing sched—inverse proportion to the thread's share. At the start

E!e[}s 0 _suptpotrrt] real-t|mte_z threr?d_s th?r;[ha:;/e \SNtrr']Ctlyof each quantum the scheduler dispatches the runnable
'gher prionity than any time-sharing thread. N thread with the lowest virtual clock value.

?Sed 'r;].s.rt] Opl(larll system,thsclheQUlers :}V'th trtns Sttfuc' Some proportional share algorithms decouple an ap-
ure exhibit well-known pathologies such as starva Ionplication's share from its latency requirement — this is

of lt)lme-dshgrlng "’?fp'!ca“"r?s durmlg overloaﬂ [1%] ?ndacritical property for real-time schedulers. EEVDF [16]
unbounded priority INVErsIon, "UNIeSs SynChronization,, ;e eg this by allowing clients to individually make

pnr_mtwes have been augmented to support priority '"the tradeoff between allocation accuracy and schedul-
heritance. Furthermore, developers are likely to overes-

timate the oriority at which thei licati hould ing overhead. SMART [12] supports a mixed program-
tl)ma € the prion lya Wf ch their aplp 'C? |ons; otu run ming model in which applications receiving proportional
)ECaUSE a poorly periorming appiication Tefiects negag, , scheduling can meet real-time requirements using
tively on its author. This harmful phenomenon is known

ority nflati a deadline-basetime constraintabstraction. BVT [4]
aspriority inflation. . . associates avarp value with each application; posi-
Although static priority schedulers are simple, effi-

ent d well understood. thev fail to isolat i tive warp values allow a thread to build up credit while
cient, and well understood, they fail to isolate appil- blocked, increasing the chances that it will be scheduled
cations from one another, and optimal priority assign-

t : dinati lication devel when it wakes up. Nemesis [8] providedagency hint
ment requires coordination among application AeVeloby, 1 is similar to warp: it brings the effective deadline of
ers. Applications can only be guaranteed to receive

%n unblocking thread closer, making it more likely to be
certain amount of CPU time if the worst-case execution 9 ' 9 y

times of higher-priority applicati k d this Scheduled.
umes ot higher-prionity applications areé known, and this 45yt admission control, proportional share sched-
is generally not possible. Still, the static-priority pro-

ramming model is reasonably intuitive for both usersUIers cannot guarantee that an application will re-
9 9 y ceive even its minimum CPU requirement during over-

('T an app_hcg_ﬂon Is starving, there mu_st be ov_erl_oad at10ad. Proportional share schedulers therefore best sup-
hl_ghe_r pr|or|t|e§) and programmers (higher priority ap- port applications thatlegrade gracefullyor lose value
plications run first). smoothly and in proportion to the amount of CPU time
taken away from them. For example, in response to a
Proportional Share shortage of cycles a game or other real-time renderer can

Proportional share schedulersare quantum-based reduce its frame rate. Other applications do not grace-

weighted round-robin schedulers. They guarantee that!ly degrade: software modems and audio players lose
an application withV shares will be given at leadf/T most or all of their value if they receive even slightly less

of the processor time, on average, whétés the total ~ CPU time than their full requirement.
number of shares over all applications. This means that
the absolute fraction of the CPU allocated to each appli-

CPU Reservations that, under certain assumptions, if any scheduling algo-
A CPU i id licati ith load rithm can meet all deadlines then EDF can. Soft real-
reservationprovides an application with load ;.0 5gg primarily use EDF as an internal scheduler

isolation and periodic execution. For example, a taslﬁ ; ; ; ;
. ' ~Implementation technique where it has no impact on the
could reserve 10 ms of CPU time out of every 50 ms; it P N b

. rogramming model: only a few systems such as Rialto
would then be guaranteed to receive no less than the r‘%nd SMART expose deadline-based scheduling abstrac-
served amount per period.

. : . ion lication programmers. Both m |
The original Spring kernel [14] is an example that rep-to s to application programmers. Both systems couple

i d of th i ¢ e it deadline-based scheduling with an admission test and
resents one end otine reservation spectrum, 1.€., 1L Prozg e resulting abstractiontame constraint

vides precise hard real-time guarantees using a scheg Time constraints present a fairly difficult program-

uler based on the earliest deadline first (EDF) algorlthmmmg model because they require fine-grained effort: the

Tp. achieve these hard gug-rantees .Sprlng reqwre@ SI%’eveloper must decide which pieces of code to execute
nificant amounts of a priori information and associated

t00ls to extract that information. Due to th t of run within the context of a time constraint in addition to
00Is to extract that Information. Lue 10 e cost ot ru “providing the deadline and an estimate of the required
time support this solution is not suitable for continuous

dia. H the Sori " lat tend rocessing time. Applications must also be prepared to
:ne_: tla. towevet_r, N p”rl]tg syds_ emt was a_etr fﬁ_eﬂ e%kip part of their processing if the admission test fails.
0 integrate continuous muitimedia streams INto tis Narty ¢ 5 time constraint is accepted, Rialto guarantees the

gularantee plarad|gm. i ¢ i application that it will receive the required CPU time.
Nl general-purpose operating systems reservations MART, on the other hand, will sometimes deliver an

be implemented n a var!ety Qf ways. Nemesis use%pca” to applications informing them that a deadline
an EDF scheduler in conjunction with an enforcement

mechanism, Rialto [7] uses a tree-based data structure IT%reviously thought to be feasible has become infeasible,
S = X rcing the program to take appropriate action.
represent time intervals, and TimeSys Linux/CPU [17] g prog pprop
uses a priority-based scheduler.
CPU reservations satisfy the requirement of suppor

ing coexisting, possibly misbehaving real-time applica-pMyltimedia OSs need to work in situations where total
tions. They eliminate the need for global coordination|oad s difficult to predict and execution times of indi-
because application resource requirements are stated {ijual applications vary considerably. To address these
absoluteunits (time) rather tharelative units like pri- proplems new approaches based on feedback control
ority or share. However, reservation-based schedulerfaye been developed. Feedback control concepts can be
must be told applications’ periods and amounts. The regpplied at admission control and/or as the scheduling al-
quired amount of CPU time can be difficult to predict, asgorithm itself.
itis both platform and data dependent. For some appli- |n the FC-EDF work [10] a feedback controller is used
cations a good estimate of future amount can be obtainegh gynamically adjust CPU utilization in such a manner
by averaging previous amounts; other applications suclys to meet a specific set point stated as a deadline miss
as the notoriously variable MPEG video decoder inherpercentage. FC-EDF is not designed to prevent individ-
ently show wide fluctuations in amount. The period is ya| applications from missing their deadlines; rather, it
easier to determine: typically it is not data or hardwareaims for high utilization and low overall deadline miss
dependent, but rather is determined by latency requireratio.
ments and the sizes of data buffers. SWIFT [15] uses a feedback mechanism to estimate
Because reservations provide applications with fairlythe amount of CPU time to reserve for applications that
hard performance guarantees (how hard depends Ofye structured as pipelines. The scheduler monitors the
the particular implementation) they are best suited forstatus of buffer queues between stages of the pipeline; it
scheduling applications that lose much of their valueattempts to keep queues half full by adjusting the amount
when their CPU requirements are not met. Reservationgf processor time that each stage receives.
can be used to support legacy multimedia applications if Both SWIFT and FC-EDF have the advantage of not
the period and amount can be determined from outsidequiring estimates of the amount of processing time that
the applications and applied to them without requiringapplications will need. Both systems require periodic
modifications. monitoring of the metric that the feedback controller acts
on.

+Feedback-Based Scheduling

Earliest Deadline First

Earliest deadline first (EDF) is an attractive scheduling
discipline because it is theoretically optimal in the sense

Hierarchical Scheduling Best Effort

Hierarchical schedulers generalize the traditional role oBest effort systems make no guarantees at all. Rather
schedulers (i.e., scheduling threads or processes) by ahan rejecting an application during overload, a best ef-
lowing them to allocate CPU time to other schedulers.fort system reduces the processor time available to other
Theroot scheduler gives CPU time to a scheduler belowapplications to make room for the new one. This works
itin the hierarchy and so on until a leaf of the schedulingwell when application performance degrades gracefully.
tree — a thread — is reached. Although “best effort” often has a negative connota-
The scheduling hierarchy may either be fixed at sys+ion, it does not necessarily imply poor service. Rather,
tem build time or dynamically constructed at run time. a best-effort system avoids the possibility of needlessly
CPU inheritance schedulinp] probably represents an rejecting feasible applications by placing the burden of
endpoint on the static vs. dynamic axis: it allows arbi- avoiding overload on the user. The computer and user
trary user-level threads to act as schedulerddayating form a feedback loop where the user manually reduces
the CPU to other threads. system load after observing that applications are per-
Hierarchical scheduling has two important proper-forming poorly.
ties. First, it permits multiple programming models to We propose two requirements that applications must
be supported simultaneously, potentially enabling supmeet for “feedback through the user” to work. First, ap-
port for applications with diverse requirements. Secondplications must degrade gracefully. Second, application
it allows properties that schedulers usually provide toperformance must not be hidden from the user, who has
threads to be recursively applied to groups of threadsto be able to notice degraded performance in order to
For example, a fair-share scheduler at the root of thelo something about it. The software controlling a CD
scheduling hierarchy on a multi-user machine with aburner fails both of these criteria: it does not degrade
time-sharing scheduler below it for each user providegracefully since even a single buffer underrun will ruin
load isolation between users that is independent of tha disc, and the user usually has no way to notice that the
number of runnable threads each user has. This usefldurner is running out of buffers supplied by the applica-
property cannot be provided by a traditional single-leveltion.
time-sharing or proportional share scheduler.
Hierarchical Start-Time Fair Queuing (SFQ) [6] pro- aAdmission Control
vides flexible isolation using a hierarchical proportional
share scheduler. Deng et al. [3] describe a two-levef System thatimplementsdmission controkeeps track
scheduling hierarchy for Windows NT that has an EDFOf some metric of system load, rejecting new applica-
scheduler at the root of the hierarchy and an appropriatéons when load is above a threshold. For systems im-
scheduler (rate-monotonic, EDF, etc.) for each real-timePlementing reservations system load could be the sum
application. Regehr and Stankovic [13] developed HLs:of the processor utilizations of existing reservations.
its contribution was to permit more effective reasoning Because it can be used to prevent overload, admission

about the guarantees provided by heterogeneous hierg#ontrol allows a mulimedia system to meet the require-
chies of schedulers. ments of all admitted applications. It provides a simple

programming model: applications are guaranteed to re-
3.2 System Behavior During Mode Changes ceive the amount of resources that they require until they

We characterize system behavior during applicatiorf€rminate. Admission control also makes the system de-
mode changes by looking at the various kinds of guarSigner’s job easy: all that is required is a load metric and
antees that the operating system gives applications. Tha threshold. _
guarantee is an important part of the programming Admission control does not serve the user well in the
model since it determines what assumptions the proSense that there is no reason to believe that the most re-
grammer can make about the allocation of processofently started application is the one that should be re-
time that an application will receive. jected. However, when a valuable application is denied
When the OS gives an application a guarantee, it is reddmission the user can manually decrease the load on the

stricting its future decision making in proportion to the System and then attempt to restart the application. Ob-
strength of the guarantee. Seen in this light, it is underViously this feedback loop can fail when the admission

Standable that many Systems give app“cations Weak cﬁontroller rejeCtS ajOb not dil’eCtly initiated by the user.

nonexistent guarantees — there is an inherent tradeoffor example, recording a television show to disk while

between providing strong guarantees and dynamicallyne user is not at home.

optimizing value by allocating cycles on the fly in re-

sponse to unexpected demand.

Renegotiation of Guarantees 3.3 Practical Considerations

Best effort and admission control are simple heuristics”"09ramming models encompass more than high-level
for achieving high overall value in situations where the @Pstractions and APls: any feature (or misfeature) of an

user can take corrective action when the heuristic is noPPerating system that the programmer must understand
performing well. Techniques usingnegotiationat- N order to write effective programs becomes part of the

tempt to achieve high overall value with little or no user Programming model. In this section we explore a few

intervention by stipulating that guarantees made to ap&Xa@mples of this. _
plications may be modified in response to changes in Can applications that block expect to meet their dead-

system load. Renegotiation is initiated when the sys/ines? Analysis of blocking and synchronization is ex-

tem calculates that there is a way to allocate CPU timd®€cted for hard real-time systems; soft real-time pro-
that is different from current allocations that would pro- 9rams are usually assumed to not block for long enough
vide higher value. To perform this calculation the systemto miss their deadlines. Applications that block on calls
must have a representation of the relationship betweelP S€rvers can only expect the server to complete work

resources granted to applications and applications’ per@" their behalf in a timely way only if the operating sys-
ceived value to the user. For example, Li and Nahrst€m propagates the client's scheduling properties to the

edt [9] describe a framework that provides global co-S€rver, and if the server internally schedules requests ac-
ordination among applications and uses feedback fronfordingly. Servers for the X Window System running on

individual applications to determine how they are per-UNIX-like operating systems are a good example where
forming. neither requirement is typically met: this is a continuing

source of trouble for UNIX-based multimedia applica-
tions.

Does dispatch latency meet application require-
Adaptation is the application-level counterpart to rene-ments? Dispatch latency is the time between when a
gotiation of guarantees, where an adaptive applicatiothread is scheduled and when it actually runs. It can
supports different modes of operation along one or morée caused by the scheduling algorithm or by other fac-
dimensions. For example, a video player may supportors. For example, in a GPOS a variety of events such
several resolutions, frame-rates, and compression metias interrupt handling and network protocol processing
ods. Each mode has a set of resource requirements agan delay thread scheduling. Operating systems with
offers some value to the user. The promise of adapnon-preemptible kernels exacerbate the problem: a high
tive applications is that the system will be able to selectpriority thread that wakes up while the kernel is in the
modes for the running set of applications that providemiddle of a long system call on the behalf of another
higher overall value than would have been possible ifthread will not be scheduled until the system call com-
each application had to be either accepted at its full serpletes. Properly configured Windows NT [2] and Linux
vice rate or rejected outright. machines have observed worst-case dispatch laténcies

Assuming that an application already supports differ-below 10 ms — this meets the latency requirements of
ent modes, adaptation complicates the application provirtually all multimedia applications. Unfortunately, the
gramming model only slightly by requiring the applica- real-time performance of these systems is highly fragile
tion to provide the system with a list of supported modesin the sense that it can be broken by any code running
and to change modes when requested. Adaptive systeniz kernel mode. Device drivers are particularly problem-
also require a more careful specification of what guaranatic; rigorous testing of driver code is needed in order to
tees are being given to applications. For example, is afeduce the likelihood of latency problems.
application asked if it can tolerate degraded service, is it Hard real-time operating systems keep interrupt la-
told that it must, or does it simply receive less processotencies very low by exercising rigid control over code
time without being notified? Is renegotiation assumed tathat executes in kernel mode; they may have worst-
be infrequent, or might it happen often? case thread dispatch latencies in the tens of microsec-

Adaptation does not make the user’s job, the programonds. General-purpose operating systems have tended
mer’s job, or the system designer’s job any easier. Into slowly chip away at latency problems by fixing trou-
stead, it permits the system to provide more value to théle spots. Recently there have been a number of versions
user. A possible drawback of adapting applications isof Linux that provide enhanced real-time characteristics
that users will not appreciate the resulting artifacts, suciio applications; they have accomplished this by making
as windows changing size and soundtracks flipping backhe kernel preemptible and by breaking up long critical
and forth between stereo and mono. Clearly there is a— . _ _

. Based on dispatch latency measurements while the system is heav-
cost associated with each user-visible adaptation; SUG, |gaded. This is not a true worst-case analysis but it indicates that
cessful systems must take this cost into account. the systems can perform well in practice.

Application Adaptation

sections in the kernel. and games such as Doom and Quake must display
frames that depend on user input with as little delay

4 Characterizing Applications as possible in order to be convincing and avoid induc-
ing motion sickness. Rendering loops are usually adap-

The real-time requirements imposed on an operatin%_ . | ” ¢
system are driven by applications. This section briefly!!Ve: Using extra CPU cycles to provide as many frames

describes the main characteristics of several importan‘?er second as possible, up to the screen refresh rate.

categories of applications; these are summarized in Tacnseduently, these applications are almost always CPU

ble 2 bound and they cannot easily share the processor with
Apblications that play stored audio and video areother applications unless the scheduler can limit the
characterized by the lack of a tight end-to-end latencycFY usage of the game.

requirement: large buffers of encoded and decoded data Finally, the high average-case pgrformant_:e of modern
can be stored in order to tolerate variations in disk,Processorsand low profitmargins in the PC indusry cre-

network, and processor bandwidth. The only Iatency-ate powerful incentives for peripheral designers to push

sensitive part of the video display process is SWitchingfuncnonallty from hardware into software. For example,

the frame that is being displayed. The latency sensitiy-S0ftware modems contain a bare minimum of hardware,

ity of a digital audio player is determined by the size of performing all ;ignal processing tasks in.software on the
the buffer on the sound hardware. Video players can demain CPU. This requires 000_'6 to be reliably scheduled
grade gracefully by dropping frames; audio players arEvery 3-16 ms; missed deadlllnes reduce throughput and
not able to do this and cause annoying sound glitche@'2Y cause dropped connections. USB speakers and CD
if their CPU requirements are not met. Although de- burners also require real-time response from the OS in

coding audio streams in formats such as MP3 and AACqrder to avoid sound glitches and ruined discs, respec-

(MPEG-2 Advanced Audio Coding — a compressed au-t'vely'

dio format similar to MP3) does not require a substan- .)
tial fraction of a modern CPU, decoding video can be® Challenges for Practical Soft Real-Time
CPU intensive, especially when the display adapter does Scheduling
not provide hardware acceleration. Encoding MPEG-2n Section 2 we presented several requirements that a
streams in software is much more CPU-intensive thamyood multimedia OS should fulfill; in this section we
decoding them; real-time encoding with good compresyefocus those requirements into a set of research chal-
sion ratios is just becoming possible. lenges for future systems.

For other applications, latency sensitivity comes from c1: Create user-centric systemslsers tell the sys-
a timing dependency between a data source and sinkem how to provide high value — they start up a set
For example, video frames received by a telepresencgf applications and expect them to work. Resource
or video conferencing application must be displayedmanagement systems should respect a user's prefer-
shortly after they are received — the requirement for lowences when tradeoffs are made between applications and
perceived latency precludes deep buffering. Audio andshould seek to maximize the utility of the system as per-
video applications, live or recorded, can, in principle, becejved by the user. User studies are needed to figure
adaptive. However, current applications tend to eithefoyt how admission control and adaptation can be used in
not be adaptive, or to be manually adaptive at a coarsgays that are intuitive and minimally inconvenient.
granularity. For example, although Winamp, a popular c2: Create usable programming models. addition
MP3 player, can be manually configured to reduce itso the usual questions about how effective, novel, and
CPU usage by disabling stereo sound, it has no mechasfficient a scheduler is, we believe that the multimedia

nism for doing this in response to a shortage of processofesearch community should be asking:
cycles.

When a computer is used as a real time audio mixer or ® What assumptions does it make about application
synthesizer the delay between when a sound arrives from characteristics, and are these assumptions justified?
a peripheral and when it is played must not exceed about
10-20 ms if the sound is to be perceived as simultaneous
with the act of playing it. Reliable fine-grained (small

millisecond) real-time is barely within reach of modern o can application developers use the programming

general-purpose OSs. Real-time audio synthesis is espe- model that is supported by the proposed system?

cially demanding because, in some cases, it is closer to |5 jt making their job easier?

hard real-time than soft: during a recording session the

cost of a dropped sample may be large. C3: Design schedulers and metrics that are robust
The rendering loop in immersive 3D environments With respect to unpredictability. Traditional real-time

e Are applications being given meaningful guaran-
tees by the system?

type examples period amount degrades | latency
gracefully?| sensitivity
stored audio MP3, AAC around 100 ms 1%-5% no low
stored video MPEG-2, AVI 33ms large yes low
distributed audio| Internet telephone bursty 1%-5% no high
distributed video| video conferencing bursty large yes high
real-time audio | software synthesizer 1-20ms varies no very high
RT simulation virtual reality, Quake up to refresh period usually 100%| yes high
RT hardware soft modem, USB speakers3—20 ms up to 50% no very high

Table 2: Characterization of soft real-time applications.

analysis assumes that software execution times can kend production operating systems. Rather than making
predicted. Unfortunately, a number of hardware andvalue judgments about one system being better than an-
software trends are making predictability an increasinglyother in an absolute sense, we have characterized each
difficult goal. These trends include deeper caching hi-in terms of the different things that they make easy and
erarchies, increasing prevalence of multiprocessors anddard, including the associated programming tasks.
multi-threaded processors, variable processor speeds for As in the realm of programming languages, there
power and heat management, larger and more deeplgre probably multiple “sweet spots” in operating system
layered software bases, and just-in-time translation, opsupport for multimedia applications. It is our hope that
timization, and virtualization of binaries. Increasing un- this article will aid the research community in construc-
predictability means that we need scheduling techniquetively comparing their systems in this space, and indeed,
that are more adaptive, where both applications and th& help find these “sweet spots” and promote the con-
system monitor and react to application progress. Westruction of systems filling them.

also need metrics for soft real-time: traditional metrics

such as number of missed deadlines are no longer suffAdcknowledgments

cient. These metrics will provide the means for talking The authors would like to thank Tarek Abdelzaher,
and reasoning about the complex relationship betweedayid Coppit, Kevin Jeffay, Chenyang Lu, Stefan
scheduling unpredictability and loss of value in applica-saroju, Leigh Stoller, and Kevin Sullivan for their help-

tions. . . o _ ful comments on drafts of this article.
C4: Provide scheduling support for applications with

diverse requirementsWe believe that multimedia sys- References

tems should support at least three types of scheduling:[l] N. Audsley, A. Burns, M. Richardson, K. Tindell, and
guaranteed rate and granularity scheduling for real-time ™~ 5 Wellings. Applying new scheduling theory to static
applications that do not degrade gracefully, best-effort priority pre-emptive schedulingsoftware Engineering
real-time scheduling for real-time applications that de- Journal 8(5):284-292, Sept. 1993.

grade gracefully, and time-sharing support for non-real- [2] . Cota-Robles and J. P. Held. A comparison of

time applications. Windows Driver Model latency performance on
C5: Provide integrated scheduling of all important Windows NT and Windows 98. IRroc. of the 3rd
resources. Although we have concentrated on CPU Symp. on Operating Systems Design and

scheduling in this article, other resources such as disk, ImplementationNew Orleans, LA, Feb. 1999.

network, and memory also need to be scheduled in order{3] z. Deng, J. W.-S. Liu, L. Zhang, S. Mouna, and A. Frei.

to achieve overall application predictability. Not only An open environment for real-time applications.

must these resources be scheduled, but we also need to Real-Time Systems Journab(2/3):165-185, May

understand and control the interactions between policies 1999

scheduling various resources. [4] K. J. Duda and D. C. Cheriton. Borrowed-Virtual-Time

(BVT) scheduling: supporting latency-sensitive threads

; in a general-purpose scheduler.RAroc. of the 17th

6 Conclusions ACI\/?Symp. gn gperating Systems Principkeswah

Scheduling support for multimedia does not exist in a Island, SC, Dec. 1999.

vacuum: schedulers only make sense within the contexts) g Ford and S. Susarla. CPU inheritance scheduling. In

of the requirements of applications, developers, and, ul- -~ proc. of the 2nd Symp. on Operating Systems Design

timately, users. This article has evaluated the differing and Implementatiorpages 91-105, Seattle, WA, Oct.

goals of many of the multimedia schedulers in research 1996.

[6] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU [18] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:

scheduler for multimedia operating systemsPc. of Flexible proportional-share resource management. In
the 2nd Symp. on Operating Systems Design and Proc. of the 1st Symp. on Operating Systems Design and
Implementationpages 107-121, Seattle, WA, Oct. 1996. Implementationpages 1-11, 1994.

[7] M. B. Jones, D. Rosu, and M.-C. Rosu. CPU
Reservations and Time Constraints: Efficient,
predictable scheduling of independent activities. In
Proc. of the 16th ACM Symp. on Operating Systems
Principles pages 198-211, Saint-MglFrance, Oct.
1997.

[8] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design and
implementation of an operating system to support
distributed multimedia applicationt£EE Journal on
Selected Areas in Communicatioig(7):1280-1297,
Sept. 1996.

[9] B. Liand K. Nahrstedt. A control-based middleware
framework for quality of service adaptatiolEEE
Journal on selected Areas of Communication
17(9):1632-1650, Sept. 1999.

[10] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. The
design and evaluation of a feedback control EDF
scheduling algorithm. Ii®roc. of the 20th IEEE
Real-Time Systems Sympages 56—67, Phoenix, AZ,
Dec. 1999.

[11] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall.
SVR4 UNIX scheduler unacceptable for multimedia
applications. IrProc. of the 4th Intl. Workshop on
Network and Operating System Support for Digital
Audio and VidepNov. 1993.

[12] J. Nieh and M. S. Lam. The design, implementation and
evaluation of SMART: A scheduler for multimedia
applications. IrProc. of the 16th ACM Symp. on
Operating Systems PrincipleSaint-Mab, France, Oct.
1997.

[13] J. Regehr and J. A. Stankovic. HLS: A framework for
composing soft real-time schedulers.Rroc. of the
22nd IEEE Real-Time Systems Symppges 3-14,
London, UK, Dec. 2001.

[14] J. A. Stankovic and K. Ramamritham. The Spring
Kernel: A new paradigm for real-time systemiEEE
Software 8(3):62—-72, May 1991.

[15] D.C. Steere, A. Goel, J. Gruenberg, D. McNamee,
C. Pu, and J. Walpole. A feedback-driven proportion
allocator for real-rate scheduling. Rroc. of the 3rd
Symp. on Operating Systems Design and
ImplementationNew Orleans, LA, Feb. 1999.

[16] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share
resource allocation algorithm for real-time, time-shared
systems. IrProc. of the 17th IEEE Real-Time Systems
Symp,. pages 288—-299, Washington DC, Dec. 1996.

[17] TimeSys Linux/GPL.
http://www.timesys.com/prodserv

