
Operating System Support for Multimedia:
The Programming Model Matters

John Regehr
School of Computing

University of Utah
regehr@cs.utah.edu

Michael B. Jones
Microsoft Research

Microsoft Corporation
mbj@microsoft.com

John A. Stankovic
Department of Computer Science

University of Virginia
stankovic@cs.virginia.edu

Abstract
Multimedia is an increasingly important part of the mix
of applications that users run on personal computers and
workstations. Research in operating system support for
multimedia has traditionally been evaluated using met-
rics such as fairness, the ability to permit applications to
meet real-time deadlines, and run-time efficiency. We ar-
gue, on the other hand, that if advanced scheduling and
resource management techniques are to be adopted in
mainstream operating systems, the roles of developers
and users will have to be considered much more seri-
ously than they have been up to this point. Our goals
are to recast the dialogue about multimedia scheduling
in these terms and to inform the reader about the state of
the art in this area. To accomplish this we survey exist-
ing multimedia scheduling techniques and analyze them
in terms of things that they make easy and difficult for
whom, including the associated programming tasks.

1 Introduction
Personal computers running Windows XP, MacOS X,
and Linux are capable of performing a variety of
multimedia tasks — accurately recognizing continuous
speech, encoding captured television signals and storing
them on disk, acting as professional-quality electronic
musical instruments, and rendering convincing virtual
worlds — all in real time. Furthermore, personal com-
puters costing less than $1000 are capable of perform-
ing several of these tasks at once if the operating sys-
tem manages resources well. The increasing pervasive-
ness of multimedia applications, and problems support-
ing them on traditional systems, have motivated many
research papers over the past decade.

This article serves two purposes. First, it surveys
existing processor scheduling techniques for supporting
multimedia on general-purpose operating systems. Sec-
ond, it advances and supports the thesis that traditional
technical metrics for evaluating these systems, while im-
portant, are not going to decide whether or not these
techniques are successful in the long run through adop-

tion in mainstream operating systems. Traditional met-
rics, one or more of which can be found in almost ev-
ery research paper on the subject, include run-time effi-
ciency, fairness, ability to permit tasks to meet deadlines,
and, more recently, energy efficiency. We argue, on the
other hand, that the critical metrics are understandability,
predictability, and ease of use, not only for application
developers but also for end users. As systems software
developers we recognize that these metrics are difficult
to evaluate. However, we believe that improvements can
be made simply by framing the dialogue about multime-
dia support in these terms. For example, can developers
reasonably be expected to provide the information that
the system needs? Will users be confronted with new
and confusing policy choices to make?

To be widely accepted a multimedia technology must
present each of three different groups — operating sys-
tem vendors, application developers, and end users —
with a good value proposition. The rest of this article
defends the thesis thatthe programming model matters,
where a programming model is the set of abstractions
and functionality presented by a system to application
developers.

2 Multimedia System Requirements
A general-purpose operating system(GPOS) for a per-
sonal computer or workstation must provide fast re-
sponse time for interactive applications, high through-
put for batch applications, and some amount of fairness
between applications. Although there is tension between
these requirements the lack of meaningful changes to the
design of time-sharing schedulers in recent years indi-
cates that they are working well enough.

The goal of a hard real-time system is similarly unam-
biguous: all hard deadlines must be met. The standard
engineering practice for building these systems is to stat-
ically determine resource requirements and schedulabil-
ity, as well as over-provisioning resources as a hedge
against unforeseen situations.

Not surprisingly, there are many systems whose re-

quirements fall between these two extremes. These are
soft real-time systems: they need to support a dynamic
mix of applications, some of which must perform com-
putations at specific times. Missed deadlines are unde-
sirable but not catastrophic.

We have identified four basic requirements that the
“ideal” multimedia operating system should meet. Al-
though it is unlikely that any single system or scheduling
policy will be able to meet all of these requirements for
all types of applications, the requirements are important
because they describe the space within which multime-
dia systems are designed. A particular set of prioriti-
zations among the requirements will result in a specific
set of tradeoffs; these tradeoffs will constrain the design
of the user interface and the application programming
model.
R1: Meet the scheduling requirements of coexisting, in-
dependently written, possibly misbehaving soft real-time
applications.

The CPU requirements of a real-time application are
often specified in terms of anamountandperiod, where
the application must receive the amount of CPU time
during each period of time. No matter how scheduling
requirements are specified, the scheduler must be able
to meet them without the benefit of global coordination
among application developers — multimedia operating
systems areopen systemsin the sense that applications
are written independently.

From the point of view of the scheduler a misbehaving
application willoverrunby attempting to use more CPU
time than was allocated to it. Schedulers that provide
load isolationguarantee a minimum amount or propor-
tion of CPU time to each multimedia application even
if other applications overrun, e.g. by entering an infinite
loop.
R2: Minimize development effort by providing abstrac-
tions and guarantees that are a good match for applica-
tions’ requirements.

In the past, personal computers were dedicated to a
single application at a time. Developers did not need
to interact much with OS resource allocation policies.
This is no longer the case. For example, it is possi-
ble to listen to music while playing a game, burn a CD
while watching a movie, or encode video from a capture
card while using speech recognition software. There-
fore, an important role of the designers of soft real-time
systems is to make it as easy as possible for develop-
ers to create applications that gracefully share machine
resources with other applications. We propose the fol-
lowing test: compare the difficulty of writing an appli-
cation for a given multimedia scheduler to the difficulty
of writing the same application if it could assume that
it is the highest priority application in the system (thus
having the machine logically to itself). If the difference

in costs is too high, application developers will assume
that contention does not exist. Rather than using features
provided by the scheduler, they will force their users to
manually eliminate contention — reducing the value po-
tentially available to end users.
R3: Provide a consistent, intuitive user interface.Users
should be able to easily express their preferences to the
system and the system should behave predictably in re-
sponse to user actions. Also, it should give the user (or
software operating on the user’s behalf) feedback about
the resource usage of existing applications and, when ap-
plicable, the likely effects of future actions.
R4: Run a mix of applications that maximizes overall
value.Unlike hard real-time systems, PCs and worksta-
tions cannot overprovision the CPU resource; demand-
ing multimedia applications tend to use all available cy-
cles. During overload the multimedia OS should run a
mix of applications that maximizes overall value. This
is the “holy grail” of resource management and is prob-
ably impossible in practice since value is a subjective
measure of the utility of an application, running at a par-
ticular time, to a particular user. Still, this requirement
is a useful one since it provides a basis for evaluating
different systems.

3 Multimedia Scheduling Strategies
Our survey of scheduling support for multimedia appli-
cations distinguishes between steady-state allocation of
CPU time and system behavior during application mode
changes (when an application starts, terminates, or has a
change of requirements). In both parts of the survey key
questions are:

• What information do applications have to provide
to the system in order to use the programming
model?

• What guarantees does the system make to applica-
tions?

• What kinds of applications does the programming
model support well (and poorly)?

• Whose jobs does it make easier (and harder)?

• How comprehensible and usable is the resulting
programming interface?

• How comprehensible and usable is the resulting
user interface?

3.1 Steady State Allocation of CPU Time
For each scheduler, we provide a brief description, give
examples of systems that implement it, and examine
which of the requirements from Section 2 the scheduler
fulfills. These characteristics are summarized in Table 1.

2

programming model examples load prior knowledge support for varying
isolation latency requirements?

rate-monotonic and Linux, RTLinux, Solaris, isolated from priority yes
other static priority Windows XP lower priority
proportional share BVT, EEVDF, SMART strong share (and latency) varies
CPU reservations Nemesis, Rialto, Spring strong period, amount yes
earliest deadline first Rialto, SMART, Spring strong / weak deadline, amount yes
feedback control FC-EDF, SWiFT varies metric, set point varies
hierarchical scheduling CPU Inheritance, SFQ, HLS varies varies varies

Table 1: Characterization of soft real-time schedulers.

Static Priority and Rate Monotonic Scheduling

The uniprocessor real-time scheduling problem has es-
sentially been solved bystatic priority analysis[1] when
the set of applications and their periods and amounts are
known in advance, and when applications can be trusted
not to overrun.

Popular general-purpose operating systems such as
Linux and Windows XP extend their time-sharing sched-
ulers to support real-time threads that have strictly
higher priority than any time-sharing thread. When
used in an open system, schedulers with this struc-
ture exhibit well-known pathologies such as starvation
of time-sharing applications during overload [11] and
unbounded priority inversion, unless synchronization
primitives have been augmented to support priority in-
heritance. Furthermore, developers are likely to overes-
timate the priority at which their applications should run
because a poorly performing application reflects nega-
tively on its author. This harmful phenomenon is known
aspriority inflation.

Although static priority schedulers are simple, effi-
cient, and well understood, they fail to isolate appli-
cations from one another, and optimal priority assign-
ment requires coordination among application develop-
ers. Applications can only be guaranteed to receive a
certain amount of CPU time if the worst-case execution
times of higher-priority applications are known, and this
is generally not possible. Still, the static-priority pro-
gramming model is reasonably intuitive for both users
(if an application is starving, there must be overload at
higher priorities) and programmers (higher priority ap-
plications run first).

Proportional Share

Proportional share schedulersare quantum-based
weighted round-robin schedulers. They guarantee that
an application withN shares will be given at leastN/T
of the processor time, on average, whereT is the total
number of shares over all applications. This means that
the absolute fraction of the CPU allocated to each appli-

cation decreases as the total number of shares increases.
Quantum size is chosen to provide a good balance be-
tween allocation error and system overhead.

Other than Lottery scheduling [18], which is a ran-
domized algorithm, all proportional share algorithms
are based on some sort ofvirtual clock — a per-thread
counter that the scheduler increments in proportion to
the amount of CPU time received by the thread and in
inverse proportion to the thread’s share. At the start
of each quantum the scheduler dispatches the runnable
thread with the lowest virtual clock value.

Some proportional share algorithms decouple an ap-
plication’s share from its latency requirement — this is
a critical property for real-time schedulers. EEVDF [16]
achieves this by allowing clients to individually make
the tradeoff between allocation accuracy and schedul-
ing overhead. SMART [12] supports a mixed program-
ming model in which applications receiving proportional
share scheduling can meet real-time requirements using
a deadline-basedtime constraintabstraction. BVT [4]
associates awarp value with each application; posi-
tive warp values allow a thread to build up credit while
blocked, increasing the chances that it will be scheduled
when it wakes up. Nemesis [8] provides alatency hint
that is similar to warp: it brings the effective deadline of
an unblocking thread closer, making it more likely to be
scheduled.

Without admission control, proportional share sched-
ulers cannot guarantee that an application will re-
ceive even its minimum CPU requirement during over-
load. Proportional share schedulers therefore best sup-
port applications thatdegrade gracefully, or lose value
smoothly and in proportion to the amount of CPU time
taken away from them. For example, in response to a
shortage of cycles a game or other real-time renderer can
reduce its frame rate. Other applications do not grace-
fully degrade: software modems and audio players lose
most or all of their value if they receive even slightly less
CPU time than their full requirement.

3

CPU Reservations

A CPU reservationprovides an application with load
isolation and periodic execution. For example, a task
could reserve 10 ms of CPU time out of every 50 ms; it
would then be guaranteed to receive no less than the re-
served amount per period.

The original Spring kernel [14] is an example that rep-
resents one end of the reservation spectrum, i.e., it pro-
vides precise hard real-time guarantees using a sched-
uler based on the earliest deadline first (EDF) algorithm.
To achieve these hard guarantees Spring required sig-
nificant amounts of a priori information and associated
tools to extract that information. Due to the cost of run-
time support this solution is not suitable for continuous
media. However, the Spring system was later extended
to integrate continuous multimedia streams into this hard
guarantee paradigm.

In general-purpose operating systems reservations can
be implemented in a variety of ways. Nemesis uses
an EDF scheduler in conjunction with an enforcement
mechanism, Rialto [7] uses a tree-based data structure to
represent time intervals, and TimeSys Linux/CPU [17]
uses a priority-based scheduler.

CPU reservations satisfy the requirement of support-
ing coexisting, possibly misbehaving real-time applica-
tions. They eliminate the need for global coordination
because application resource requirements are stated in
absoluteunits (time) rather thanrelative units like pri-
ority or share. However, reservation-based schedulers
must be told applications’ periods and amounts. The re-
quired amount of CPU time can be difficult to predict, as
it is both platform and data dependent. For some appli-
cations a good estimate of future amount can be obtained
by averaging previous amounts; other applications such
as the notoriously variable MPEG video decoder inher-
ently show wide fluctuations in amount. The period is
easier to determine: typically it is not data or hardware
dependent, but rather is determined by latency require-
ments and the sizes of data buffers.

Because reservations provide applications with fairly
hard performance guarantees (how hard depends on
the particular implementation) they are best suited for
scheduling applications that lose much of their value
when their CPU requirements are not met. Reservations
can be used to support legacy multimedia applications if
the period and amount can be determined from outside
the applications and applied to them without requiring
modifications.

Earliest Deadline First

Earliest deadline first (EDF) is an attractive scheduling
discipline because it is theoretically optimal in the sense

that, under certain assumptions, if any scheduling algo-
rithm can meet all deadlines then EDF can. Soft real-
time OSs primarily use EDF as an internal scheduler
implementation technique where it has no impact on the
programming model: only a few systems such as Rialto
and SMART expose deadline-based scheduling abstrac-
tions to application programmers. Both systems couple
deadline-based scheduling with an admission test and
call the resulting abstraction atime constraint.

Time constraints present a fairly difficult program-
ming model because they require fine-grained effort: the
developer must decide which pieces of code to execute
within the context of a time constraint in addition to
providing the deadline and an estimate of the required
processing time. Applications must also be prepared to
skip part of their processing if the admission test fails.
Once a time constraint is accepted, Rialto guarantees the
application that it will receive the required CPU time.
SMART, on the other hand, will sometimes deliver an
upcall to applications informing them that a deadline
previously thought to be feasible has become infeasible,
forcing the program to take appropriate action.

Feedback-Based Scheduling

Multimedia OSs need to work in situations where total
load is difficult to predict and execution times of indi-
vidual applications vary considerably. To address these
problems new approaches based on feedback control
have been developed. Feedback control concepts can be
applied at admission control and/or as the scheduling al-
gorithm itself.

In the FC-EDF work [10] a feedback controller is used
to dynamically adjust CPU utilization in such a manner
as to meet a specific set point stated as a deadline miss
percentage. FC-EDF is not designed to prevent individ-
ual applications from missing their deadlines; rather, it
aims for high utilization and low overall deadline miss
ratio.

SWiFT [15] uses a feedback mechanism to estimate
the amount of CPU time to reserve for applications that
are structured as pipelines. The scheduler monitors the
status of buffer queues between stages of the pipeline; it
attempts to keep queues half full by adjusting the amount
of processor time that each stage receives.

Both SWiFT and FC-EDF have the advantage of not
requiring estimates of the amount of processing time that
applications will need. Both systems require periodic
monitoring of the metric that the feedback controller acts
on.

4

Hierarchical Scheduling

Hierarchical schedulers generalize the traditional role of
schedulers (i.e., scheduling threads or processes) by al-
lowing them to allocate CPU time to other schedulers.
Theroot scheduler gives CPU time to a scheduler below
it in the hierarchy and so on until a leaf of the scheduling
tree — a thread — is reached.

The scheduling hierarchy may either be fixed at sys-
tem build time or dynamically constructed at run time.
CPU inheritance scheduling[5] probably represents an
endpoint on the static vs. dynamic axis: it allows arbi-
trary user-level threads to act as schedulers bydonating
the CPU to other threads.

Hierarchical scheduling has two important proper-
ties. First, it permits multiple programming models to
be supported simultaneously, potentially enabling sup-
port for applications with diverse requirements. Second,
it allows properties that schedulers usually provide to
threads to be recursively applied to groups of threads.
For example, a fair-share scheduler at the root of the
scheduling hierarchy on a multi-user machine with a
time-sharing scheduler below it for each user provides
load isolation between users that is independent of the
number of runnable threads each user has. This useful
property cannot be provided by a traditional single-level
time-sharing or proportional share scheduler.

Hierarchical Start-Time Fair Queuing (SFQ) [6] pro-
vides flexible isolation using a hierarchical proportional
share scheduler. Deng et al. [3] describe a two-level
scheduling hierarchy for Windows NT that has an EDF
scheduler at the root of the hierarchy and an appropriate
scheduler (rate-monotonic, EDF, etc.) for each real-time
application. Regehr and Stankovic [13] developed HLS;
its contribution was to permit more effective reasoning
about the guarantees provided by heterogeneous hierar-
chies of schedulers.

3.2 System Behavior During Mode Changes
We characterize system behavior during application
mode changes by looking at the various kinds of guar-
antees that the operating system gives applications. The
guarantee is an important part of the programming
model since it determines what assumptions the pro-
grammer can make about the allocation of processor
time that an application will receive.

When the OS gives an application a guarantee, it is re-
stricting its future decision making in proportion to the
strength of the guarantee. Seen in this light, it is under-
standable that many systems give applications weak or
nonexistent guarantees — there is an inherent tradeoff
between providing strong guarantees and dynamically
optimizing value by allocating cycles on the fly in re-
sponse to unexpected demand.

Best Effort

Best effort systems make no guarantees at all. Rather
than rejecting an application during overload, a best ef-
fort system reduces the processor time available to other
applications to make room for the new one. This works
well when application performance degrades gracefully.

Although “best effort” often has a negative connota-
tion, it does not necessarily imply poor service. Rather,
a best-effort system avoids the possibility of needlessly
rejecting feasible applications by placing the burden of
avoiding overload on the user. The computer and user
form a feedback loop where the user manually reduces
system load after observing that applications are per-
forming poorly.

We propose two requirements that applications must
meet for “feedback through the user” to work. First, ap-
plications must degrade gracefully. Second, application
performance must not be hidden from the user, who has
to be able to notice degraded performance in order to
do something about it. The software controlling a CD
burner fails both of these criteria: it does not degrade
gracefully since even a single buffer underrun will ruin
a disc, and the user usually has no way to notice that the
burner is running out of buffers supplied by the applica-
tion.

Admission Control

A system that implementsadmission controlkeeps track
of some metric of system load, rejecting new applica-
tions when load is above a threshold. For systems im-
plementing reservations system load could be the sum
of the processor utilizations of existing reservations.

Because it can be used to prevent overload, admission
control allows a multimedia system to meet the require-
ments of all admitted applications. It provides a simple
programming model: applications are guaranteed to re-
ceive the amount of resources that they require until they
terminate. Admission control also makes the system de-
signer’s job easy: all that is required is a load metric and
a threshold.

Admission control does not serve the user well in the
sense that there is no reason to believe that the most re-
cently started application is the one that should be re-
jected. However, when a valuable application is denied
admission the user can manually decrease the load on the
system and then attempt to restart the application. Ob-
viously this feedback loop can fail when the admission
controller rejects a job not directly initiated by the user.
For example, recording a television show to disk while
the user is not at home.

5

Renegotiation of Guarantees

Best effort and admission control are simple heuristics
for achieving high overall value in situations where the
user can take corrective action when the heuristic is not
performing well. Techniques usingrenegotiationat-
tempt to achieve high overall value with little or no user
intervention by stipulating that guarantees made to ap-
plications may be modified in response to changes in
system load. Renegotiation is initiated when the sys-
tem calculates that there is a way to allocate CPU time
that is different from current allocations that would pro-
vide higher value. To perform this calculation the system
must have a representation of the relationship between
resources granted to applications and applications’ per-
ceived value to the user. For example, Li and Nahrst-
edt [9] describe a framework that provides global co-
ordination among applications and uses feedback from
individual applications to determine how they are per-
forming.

Application Adaptation

Adaptation is the application-level counterpart to rene-
gotiation of guarantees, where an adaptive application
supports different modes of operation along one or more
dimensions. For example, a video player may support
several resolutions, frame-rates, and compression meth-
ods. Each mode has a set of resource requirements and
offers some value to the user. The promise of adap-
tive applications is that the system will be able to select
modes for the running set of applications that provide
higher overall value than would have been possible if
each application had to be either accepted at its full ser-
vice rate or rejected outright.

Assuming that an application already supports differ-
ent modes, adaptation complicates the application pro-
gramming model only slightly by requiring the applica-
tion to provide the system with a list of supported modes
and to change modes when requested. Adaptive systems
also require a more careful specification of what guaran-
tees are being given to applications. For example, is an
application asked if it can tolerate degraded service, is it
told that it must, or does it simply receive less processor
time without being notified? Is renegotiation assumed to
be infrequent, or might it happen often?

Adaptation does not make the user’s job, the program-
mer’s job, or the system designer’s job any easier. In-
stead, it permits the system to provide more value to the
user. A possible drawback of adapting applications is
that users will not appreciate the resulting artifacts, such
as windows changing size and soundtracks flipping back
and forth between stereo and mono. Clearly there is a
cost associated with each user-visible adaptation; suc-
cessful systems must take this cost into account.

3.3 Practical Considerations
Programming models encompass more than high-level
abstractions and APIs: any feature (or misfeature) of an
operating system that the programmer must understand
in order to write effective programs becomes part of the
programming model. In this section we explore a few
examples of this.

Can applications that block expect to meet their dead-
lines? Analysis of blocking and synchronization is ex-
pected for hard real-time systems; soft real-time pro-
grams are usually assumed to not block for long enough
to miss their deadlines. Applications that block on calls
to servers can only expect the server to complete work
on their behalf in a timely way only if the operating sys-
tem propagates the client’s scheduling properties to the
server, and if the server internally schedules requests ac-
cordingly. Servers for the X Window System running on
UNIX-like operating systems are a good example where
neither requirement is typically met: this is a continuing
source of trouble for UNIX-based multimedia applica-
tions.

Does dispatch latency meet application require-
ments? Dispatch latency is the time between when a
thread is scheduled and when it actually runs. It can
be caused by the scheduling algorithm or by other fac-
tors. For example, in a GPOS a variety of events such
as interrupt handling and network protocol processing
can delay thread scheduling. Operating systems with
non-preemptible kernels exacerbate the problem: a high
priority thread that wakes up while the kernel is in the
middle of a long system call on the behalf of another
thread will not be scheduled until the system call com-
pletes. Properly configured Windows NT [2] and Linux
machines have observed worst-case dispatch latencies1

below 10 ms — this meets the latency requirements of
virtually all multimedia applications. Unfortunately, the
real-time performance of these systems is highly fragile
in the sense that it can be broken by any code running
in kernel mode. Device drivers are particularly problem-
atic; rigorous testing of driver code is needed in order to
reduce the likelihood of latency problems.

Hard real-time operating systems keep interrupt la-
tencies very low by exercising rigid control over code
that executes in kernel mode; they may have worst-
case thread dispatch latencies in the tens of microsec-
onds. General-purpose operating systems have tended
to slowly chip away at latency problems by fixing trou-
ble spots. Recently there have been a number of versions
of Linux that provide enhanced real-time characteristics
to applications; they have accomplished this by making
the kernel preemptible and by breaking up long critical

1Based on dispatch latency measurements while the system is heav-
ily loaded. This is not a true worst-case analysis but it indicates that
the systems can perform well in practice.

6

sections in the kernel.

4 Characterizing Applications
The real-time requirements imposed on an operating
system are driven by applications. This section briefly
describes the main characteristics of several important
categories of applications; these are summarized in Ta-
ble 2.

Applications that play stored audio and video are
characterized by the lack of a tight end-to-end latency
requirement: large buffers of encoded and decoded data
can be stored in order to tolerate variations in disk,
network, and processor bandwidth. The only latency-
sensitive part of the video display process is switching
the frame that is being displayed. The latency sensitiv-
ity of a digital audio player is determined by the size of
the buffer on the sound hardware. Video players can de-
grade gracefully by dropping frames; audio players are
not able to do this and cause annoying sound glitches
if their CPU requirements are not met. Although de-
coding audio streams in formats such as MP3 and AAC
(MPEG-2 Advanced Audio Coding — a compressed au-
dio format similar to MP3) does not require a substan-
tial fraction of a modern CPU, decoding video can be
CPU intensive, especially when the display adapter does
not provide hardware acceleration. Encoding MPEG-2
streams in software is much more CPU-intensive than
decoding them; real-time encoding with good compres-
sion ratios is just becoming possible.

For other applications, latency sensitivity comes from
a timing dependency between a data source and sink.
For example, video frames received by a telepresence
or video conferencing application must be displayed
shortly after they are received — the requirement for low
perceived latency precludes deep buffering. Audio and
video applications, live or recorded, can, in principle, be
adaptive. However, current applications tend to either
not be adaptive, or to be manually adaptive at a coarse
granularity. For example, although Winamp, a popular
MP3 player, can be manually configured to reduce its
CPU usage by disabling stereo sound, it has no mecha-
nism for doing this in response to a shortage of processor
cycles.

When a computer is used as a real time audio mixer or
synthesizer the delay between when a sound arrives from
a peripheral and when it is played must not exceed about
10–20 ms if the sound is to be perceived as simultaneous
with the act of playing it. Reliable fine-grained (small
millisecond) real-time is barely within reach of modern
general-purpose OSs. Real-time audio synthesis is espe-
cially demanding because, in some cases, it is closer to
hard real-time than soft: during a recording session the
cost of a dropped sample may be large.

The rendering loop in immersive 3D environments

and games such as Doom and Quake must display
frames that depend on user input with as little delay
as possible in order to be convincing and avoid induc-
ing motion sickness. Rendering loops are usually adap-
tive, using extra CPU cycles to provide as many frames
per second as possible, up to the screen refresh rate.
Consequently, these applications are almost always CPU
bound and they cannot easily share the processor with
other applications unless the scheduler can limit the
CPU usage of the game.

Finally, the high average-case performance of modern
processors and low profit margins in the PC industry cre-
ate powerful incentives for peripheral designers to push
functionality from hardware into software. For example,
software modems contain a bare minimum of hardware,
performing all signal processing tasks in software on the
main CPU. This requires code to be reliably scheduled
every 3-16 ms; missed deadlines reduce throughput and
may cause dropped connections. USB speakers and CD
burners also require real-time response from the OS in
order to avoid sound glitches and ruined discs, respec-
tively.

5 Challenges for Practical Soft Real-Time
Scheduling

In Section 2 we presented several requirements that a
good multimedia OS should fulfill; in this section we
refocus those requirements into a set of research chal-
lenges for future systems.

C1: Create user-centric systems.Users tell the sys-
tem how to provide high value — they start up a set
of applications and expect them to work. Resource
management systems should respect a user’s prefer-
ences when tradeoffs are made between applications and
should seek to maximize the utility of the system as per-
ceived by the user. User studies are needed to figure
out how admission control and adaptation can be used in
ways that are intuitive and minimally inconvenient.

C2: Create usable programming models.In addition
to the usual questions about how effective, novel, and
efficient a scheduler is, we believe that the multimedia
research community should be asking:

• What assumptions does it make about application
characteristics, and are these assumptions justified?

• Are applications being given meaningful guaran-
tees by the system?

• Can application developers use the programming
model that is supported by the proposed system?
Is it making their job easier?

C3: Design schedulers and metrics that are robust
with respect to unpredictability.Traditional real-time

7

type examples period amount degrades latency
gracefully? sensitivity

stored audio MP3, AAC around 100 ms 1%–5% no low
stored video MPEG-2, AVI 33 ms large yes low
distributed audio Internet telephone bursty 1%–5% no high
distributed video video conferencing bursty large yes high
real-time audio software synthesizer 1–20 ms varies no very high
RT simulation virtual reality, Quake up to refresh period usually 100% yes high
RT hardware soft modem, USB speakers3–20 ms up to 50% no very high

Table 2: Characterization of soft real-time applications.

analysis assumes that software execution times can be
predicted. Unfortunately, a number of hardware and
software trends are making predictability an increasingly
difficult goal. These trends include deeper caching hi-
erarchies, increasing prevalence of multiprocessors and
multi-threaded processors, variable processor speeds for
power and heat management, larger and more deeply
layered software bases, and just-in-time translation, op-
timization, and virtualization of binaries. Increasing un-
predictability means that we need scheduling techniques
that are more adaptive, where both applications and the
system monitor and react to application progress. We
also need metrics for soft real-time: traditional metrics
such as number of missed deadlines are no longer suffi-
cient. These metrics will provide the means for talking
and reasoning about the complex relationship between
scheduling unpredictability and loss of value in applica-
tions.

C4: Provide scheduling support for applications with
diverse requirements.We believe that multimedia sys-
tems should support at least three types of scheduling:
guaranteed rate and granularity scheduling for real-time
applications that do not degrade gracefully, best-effort
real-time scheduling for real-time applications that de-
grade gracefully, and time-sharing support for non-real-
time applications.

C5: Provide integrated scheduling of all important
resources. Although we have concentrated on CPU
scheduling in this article, other resources such as disk,
network, and memory also need to be scheduled in order
to achieve overall application predictability. Not only
must these resources be scheduled, but we also need to
understand and control the interactions between policies
scheduling various resources.

6 Conclusions
Scheduling support for multimedia does not exist in a
vacuum: schedulers only make sense within the context
of the requirements of applications, developers, and, ul-
timately, users. This article has evaluated the differing
goals of many of the multimedia schedulers in research

and production operating systems. Rather than making
value judgments about one system being better than an-
other in an absolute sense, we have characterized each
in terms of the different things that they make easy and
hard, including the associated programming tasks.

As in the realm of programming languages, there
are probably multiple “sweet spots” in operating system
support for multimedia applications. It is our hope that
this article will aid the research community in construc-
tively comparing their systems in this space, and indeed,
to help find these “sweet spots” and promote the con-
struction of systems filling them.

Acknowledgments
The authors would like to thank Tarek Abdelzaher,
David Coppit, Kevin Jeffay, Chenyang Lu, Stefan
Saroiu, Leigh Stoller, and Kevin Sullivan for their help-
ful comments on drafts of this article.

References
[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and

A. Wellings. Applying new scheduling theory to static
priority pre-emptive scheduling.Software Engineering
Journal, 8(5):284–292, Sept. 1993.

[2] E. Cota-Robles and J. P. Held. A comparison of
Windows Driver Model latency performance on
Windows NT and Windows 98. InProc. of the 3rd
Symp. on Operating Systems Design and
Implementation, New Orleans, LA, Feb. 1999.

[3] Z. Deng, J. W.-S. Liu, L. Zhang, S. Mouna, and A. Frei.
An open environment for real-time applications.
Real-Time Systems Journal, 16(2/3):165–185, May
1999.

[4] K. J. Duda and D. C. Cheriton. Borrowed-Virtual-Time
(BVT) scheduling: supporting latency-sensitive threads
in a general-purpose scheduler. InProc. of the 17th
ACM Symp. on Operating Systems Principles, Kiawah
Island, SC, Dec. 1999.

[5] B. Ford and S. Susarla. CPU inheritance scheduling. In
Proc. of the 2nd Symp. on Operating Systems Design
and Implementation, pages 91–105, Seattle, WA, Oct.
1996.

8

[6] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU
scheduler for multimedia operating systems. InProc. of
the 2nd Symp. on Operating Systems Design and
Implementation, pages 107–121, Seattle, WA, Oct. 1996.

[7] M. B. Jones, D. Roşu, and M.-C. Roşu. CPU
Reservations and Time Constraints: Efficient,
predictable scheduling of independent activities. In
Proc. of the 16th ACM Symp. on Operating Systems
Principles, pages 198–211, Saint-Malô, France, Oct.
1997.

[8] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design and
implementation of an operating system to support
distributed multimedia applications.IEEE Journal on
Selected Areas in Communications, 14(7):1280–1297,
Sept. 1996.

[9] B. Li and K. Nahrstedt. A control-based middleware
framework for quality of service adaptation.IEEE
Journal on selected Areas of Communication,
17(9):1632–1650, Sept. 1999.

[10] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. The
design and evaluation of a feedback control EDF
scheduling algorithm. InProc. of the 20th IEEE
Real-Time Systems Symp., pages 56–67, Phoenix, AZ,
Dec. 1999.

[11] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall.
SVR4 UNIX scheduler unacceptable for multimedia
applications. InProc. of the 4th Intl. Workshop on
Network and Operating System Support for Digital
Audio and Video, Nov. 1993.

[12] J. Nieh and M. S. Lam. The design, implementation and
evaluation of SMART: A scheduler for multimedia
applications. InProc. of the 16th ACM Symp. on
Operating Systems Principles, Saint-Mal̂o, France, Oct.
1997.

[13] J. Regehr and J. A. Stankovic. HLS: A framework for
composing soft real-time schedulers. InProc. of the
22nd IEEE Real-Time Systems Symp., pages 3–14,
London, UK, Dec. 2001.

[14] J. A. Stankovic and K. Ramamritham. The Spring
Kernel: A new paradigm for real-time systems.IEEE
Software, 8(3):62–72, May 1991.

[15] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee,
C. Pu, and J. Walpole. A feedback-driven proportion
allocator for real-rate scheduling. InProc. of the 3rd
Symp. on Operating Systems Design and
Implementation, New Orleans, LA, Feb. 1999.

[16] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share
resource allocation algorithm for real-time, time-shared
systems. InProc. of the 17th IEEE Real-Time Systems
Symp., pages 288–299, Washington DC, Dec. 1996.

[17] TimeSys Linux/GPL.
http://www.timesys.com/prodserv .

[18] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:
Flexible proportional-share resource management. In
Proc. of the 1st Symp. on Operating Systems Design and
Implementation, pages 1–11, 1994.

9

