
Performance Specifications and Metrics for Adaptive Real-Time Systems*

Chenyang Lu John A. Stankovic Tarek F. Abdelzaher

Gang Tao* Sang H. Son Michael Marley

Department of Computer Science *Department of Electrical Engineering
University of Virginia, Charlottesville, VA22903

e-mail: {cl7v, stankovic, zaher, gt9s, son, mem5w}@ virginia.edu

* Supported in part by NSF grants CCR-9901706 and EIA-
9900895, and contract IJRP-9803-6 from the Ministry of
Information and Communication of Korea.

Abstract

While early research on real-time computing was
concerned with guaranteeing avoidance of undesirable
effects such as overload and deadline misses, adaptive
real-time systems are designed to handle such effects
dynamically. Various research efforts have addressed
the characterization and improvement of the dynamic
behavior of real-time systems. However, to the authors’
knowledge, no unified framework exists for designing
adaptive, real-time software systems based on
specifications of desired dynamic behavior. We
propose such a framework based on control theory.
Using control theory a designer can (i) specify the
desired behavior in terms of a set of performance
metrics that can be mapped to a dynamic response of
the control system, (ii) establish an underlying control
model of the real-time systems, and (iii) design a
resource scheduler using feedback control design
methods to guarantee runtime satisfaction of the specs.
This is in contrast to more ad hoc techniques. We also
show that simply using long term average performance
metrics is not sufficient in designing controllers. We
then develop a new algorithm based on two PID
controllers that meet both the transient and steady
state performance requirements.

1. Introduction
While traditional real-time systems such as process
control systems typically work in closed and highly
predictable environments, a new category of soft real-
time applications executing in open and unpredictable
environments is rapidly growing in recent years [24].
Examples include online trading, e-commerce,
multimedia, and agile manufacturing. Performance
guarantees are required in these types of applications.
Failure to meet performance guarantees may result in

loss of customers, financial damage, or liability
violations. Adaptive real-time systems [1-8, 12, 13, 17-
19, 20, 23, 26] have been developed as a promising
approach to achieve performance guarantees in
unpredictable environments. While early research on
real-time computing was concerned with guaranteeing
complete avoidance of undesirable effects such as
overload and deadline misses, adaptive real-time
systems are designed to handle such effects
dynamically. Dynamic (transient and steady-state)
behavior of adaptive real-time systems upon load or
resource changes has received special attention in
recent years. Transient behavior of an adaptive system
describes the responsiveness and efficiency of QoS
adaptation in reacting to changes in run-time
conditions, and steady-state behavior describes a
system’s long-term performance after its transient
response settles. Several research efforts addressed the
characterization and improvement of dynamic behavior
of real-time systems. For example, Rosu et. al. [20]
proposed a set of performance metrics to capture the
transient responsiveness and the steady-sate impact of
adaptations. In [8], Brandt, et. al. evaluated a dynamic
QoS manager by measuring the transient performance
of applications in response to QoS adaptations.
However, to the authors’ knowledge, no unified
framework exists to date for designing an adaptive
system from performance specifications of desired
dynamic response. In this paper we propose such a
system design framework that maps QoS control in
adaptive real-time systems to control theory. Our
framework works as follows.

1) The system designer specifies the desired dynamic
behavior with existing transient and steady-state
performance metrics. This step requires a mapping
from the existing metrics of adaptive real-time

systems to the dynamic responses of control
systems in control theory.

2) The system designer establishes a mathematical
model of the system for the purposes of feedback
control.

3) Based on the performance specs and system model
from step 1) and 2), the system designer applies
existing mathematical techniques in control theory
[11][14] to design QoS adaptation algorithms with
analytic guarantees on the desired transient and
steady-state behavior at run-time. This step is
similar to the process that a control engineer uses
to design a controller for a feedback-control
system to achieve desired dynamic responses.

In this paper, we define a category of performance
metrics for transient response that can be readily
mapped to dynamic response specifications of control
systems (section 2), which is the first step in the
framework. In the second step, we use the
mathematical model we proposed in [17] for adaptive
real-time systems. This model allows designing a
controller using any of several standard techniques
borrowed from control theory textbooks [11]. The
second and third steps have been described in previous
literature and thus will not be elaborated in this paper.
The challenge in applying these steps in practice to
computing systems lies in designing a scheduling
algorithm that is capable of faithfully implementing the
feedback controller. This algorithm is the link between
the abstract control-theoretical formulation and the
specifics of resource scheduling in a real-time system.
In this paper, we show that designing the scheduling
algorithm is not trivial. In particular, we show in
Section 3 that an existing control-theory based
scheduling algorithm, FC-EDF, is in fact incapable of
implementing the theoretical controller. Testing this
algorithm in the context of the proposed framework
reveals that while it achieves the desired steady state
response, it cannot produce the desired transient
behavior. Instead, it leads to an unstable system.

In section 4, we present a new scheduling algorithm
FC-EDF2 that features two controllers that achieves the
performance specs of both the steady-sate and transient
behavior. After the discussion of the related work in
section 5, the paper concludes with a summary and
future work in section 6.

2. Performance specs and metrics
It is difficult to characterize the performance of
adaptive real-time systems for two main reasons. First,
it is often impossible to predict the exact run-time
workload of such systems. Therefore, the system
developer needs to characterize how much and in what

form the system should be stressed. Second, traditional
metrics such as the average miss-ratio cannot capture
the transient behavior of the system in response to load
variations. Recently (e.g., [20]), a set of metrics was
proposed to characterize both transient and steady-state
behavior of an adaptive system. In this section, we
extend these metrics and show that the set of metrics
can be mapped to dynamic responses of control
systems, which enable the use of control theory
techniques in QoS adaptation designs. The
performance specs consist of a set of miss-ratio
profiles1, in response to a set of representative load
profiles adapted from control theory [11].

2.1. Load Profile
For real-time systems operating in unpredictable
environments, system load is not known a priori.
However, system performance can be specified under a
set of representative load profiles borrowed from
control theory; namely, the step load and the ramp
load. Similar types of signals have been widely used to
generate canonical system responses in control theory.
In the context of real-time systems, the step load
represents the worst-case load variation, and the ramp
load represents a nominal form of load variation. We
define the system load as the resource requirement in
percentage of the system capacity (i.e., the load
corresponding to the full system capacity is 100%, and
an overload is a system load that is higher than 100%).
A load profile L(t) is the system load as a function of
time. In practice, a certain level of load can be
translated into system-specific load parameters. For
example, a 500% system load can be translated to the
request rate of 8,000 request/sec in a specific web
server (assuming a fixed requested file type/size
distribution). For a process control system whose
workload is composed of periodic tasks, the load can
be expressed as the requested CPU utilization. The
load profiles are defined as follows.

• Step-load SL(t): a load profile that instantaneously
jumps from a nominal load Lnom to load Lmax and
stays constant after the jump. In real systems, load
variations typically occur gradually over a finite
amount of time. Gradual load changes are easier to
control and adapt to than sudden load changes.
The step-load is represented with a tuple SL(Lnom,
Lmax).

• Ramp-load RL(t): a load profile that increases
linearly from the nominal load to a specific level

1 The miss-ratio profile can be generalized to other metrics
such as resource utilization, response time, throughput, and
value-cognizant metrics.

of overload during a time interval. Compared with
the step load, the ramp signal represents a less
severe and more realistic load variation scenario.
The ramp-load RL(t) is described with a tuple
RL(Lnom, Lmax, T), where Lnom is the original load,
Lmax is the new load, and T is the time it takes the
load to increase from Lnom to Lmax.

In practice the load profiles are application-specific
based on the load characteristics and system
requirements. It is usually necessary to specify and test
the system performance under a series of load profiles
with different types/parameters. The load profile is an
abstraction of the workload, and there can be many
possible instantiations of the same load profile. The
instantiation of a load profile should incorporate the
knowledge of the workload, and therefore the load
profile should be viewed as an enhancement to existing
benchmarks.

2.2. Miss-Ratio Profile
We now characterize the system performance in terms
of deadline miss-ratio in response to a specific load
profile. The miss-ratio function MR(t) is defined as the
number of deadline misses divided by the number of
task submissions in a time window (t-MW, t), where
MW is an application specific parameter called the
miss-ratio window. Note that when MW is small, MR(t)
approximates the instantaneous system performance at
time t. In contrast, the average miss-ratio Ma, a
traditional metric for real-time systems, is defined as
the total number of deadline misses divided by the total
number of task instances throughout the run-time (or in
a much larger time window than MW). Ma represents
the average system performance over a long time
period. The average miss-ratio alone can be an
inadequate metric in characterizing the dynamics of the
system performance (as demonstrated in sections 3 and
4). Based on the miss-ratio function, the system
performance can be characterized with the miss-ratio
profile, a set of characteristics of MR(t) in response to a
load profile L(t). From the control theory point of view,
a real-time system transits from the steady state to the
transient state when load variation causes MR(t) to
deviate significantly from its current value. After a
time interval in the transient state, the system may
settle down to a new steady state. For real-time
systems, the steady-state can be defined as a state when
MR(t) is bounded by a constant called steady-state
miss-ratio bound SMB, i.e., MR(t) ≤ SMB. SMB
depends on the tolerance of the application to the
deadline miss-ratio (e.g., SMB=0 for a system which
requires no deadline misses in steady state). The
transient state represents a state with degraded
performance upon overload, while the steady state

represents a state when the system performance is
satisfactory. A miss-ratio profile describes the system
performance in both transient state and steady state as
follows.

• Stability: A system is said to be stable, in response
to a step or ramp load profile, if the system output
converges to zero as time goes to infinity, i.e., the
system is said to be stable if limt→∞MR(t) = 0
under any step or ramp loads2. Practical stability is
defined as the system’s ability to return to a given
small miss-ratio after the system experiences a
step load or a ramp load profile, i.e., the system is
said to be practically stable if limt→∞MR(t) ≤ SMB
for some small constant 0 < SMB < 1. Note that
the existence of the above limit excludes excessive
oscillatory behavior. We should also note that, by
definition, the practical stability of a system
depends on the choice of the settling miss-ratio
bound SMB. A system may be practically stable
under one SMB value, but may not be practically
stable under a different (smaller) SMB value. A
stable system can always recover from the
specified overload conditions and resume
satisfactory performance; while an unstable system
may fail to recover from an overload. Therefore,
stability is an important requirement for real-time
systems. For convenience of presentation, we will
use the term stability to refer to practical stability
in the rest of this paper.

• Transient-state response describes the
responsiveness and efficiency of QoS adaptation
in reacting to changes in run-time conditions.
− Overshoot Mo: The highest miss-ratio in the

transient state. Overshoot represents the
worst-case transient performance of a system
in response to the load profile. Overshoot is
an important metric because a high transient
miss-ratio can cause system failure in many
systems such as robots and media streaming
[8].

− Settling time Ts: The time it takes the system
miss-ratio to enter a steady state after a load
profile occurs. The settling time represents
how fast the system can recover from
overload. This metric has also been called
reaction time or recovery time [20].

2 Usual stability concepts from control theory such as
Lyapunov stability and bounded-input and bounded-output
stability [9], may not be applicable to real-time systems,
because either the system states are not defined or miss-ratio
is always bounded in [0, 1].

• Steady-state miss-ratio Ms: Average miss-ratio in
the steady state. Ms characterizes how well the
system recovers after adaptation.

• Sensitivity Sp: Relative change of the steady-state
miss-ratio with respect to the relative change of a
system parameter p. For example, sensitivity with
respect to the task execution time Set represents
how significantly the change in the task execution
time affects the system miss-ratio. Sensitivity
describes the robustness of the system with regard
to workload or system variation.

With the load profile and miss-ratio profile, we
establish a mapping from metrics of adaptive real-time
systems to dynamic response of control systems. This
mapping enables system designers to apply established
control theory techniques to achieve stability, and
meet transient and steady-state specs.

SL(0, 200%) RL(100%, 400%, 60 sec)

Mo < 50% < 50%

Ts < 60sec < 90sec

Ms = 0% = 0%

Set = 0% = 0%

MW 2.4sec

SMB 0%

Table 1. Specs of a real-time system

2.3. Specs of a real-time system
As an example of the control-based design framework,
we first define the transient and steady-state specs of a
real-time system. We then show that an existing
scheduling algorithm FC-EDF cannot satisfy the specs
due to problems with its controller design. In section 4,
we present a new scheduling algorithm with a
improved controller that can satisfy the specs.

Table 1 illustrates the specs for a real-time system
to be designed. The miss-ratio window of interest is
MW = 2.4 sec. SMB = 0 means that MR(t) stays at 0%
the system is in steady state. The transient and steady-
state performance require that, (1) The system should
always recover from a step load of 200% of the system
capacity (SL(0, 200%)) and from a ramp load that
grows from 100% to 400% of the system capacity
within a minute (RL(100%, 400%, 60 sec)); (2)
(Settling-time requirement) The system should resume
zero deadline miss-ratio within 60 sec after the
occurrence of the step load and within 90 sec after the
occurrence of the ramp load; (3) (Overshoot
requirement) The highest miss-ratio during the
transient state should be lower than 50%; (4) (Steady-
state miss-ratio requirement) The system should
maintain zero miss-ratio after it settles down from
overload; (5) (Sensitivity requirement) The system

should maintain 0% miss-ratio in steady state
regardless of the actual execution times of the tasks.
With a control-theoretical system model such as that
described in [17], one can design a controller that
achieves the above specs on transient and steady state
response. A standard controller used in industry today
is the PID controller. The PID controller design
problem is elaborated in standard control textbooks
such as [11], and is therefore not described in this
paper. Once the PID controller is designed, the
challenge is to translate it into a feedback scheduler.
The only scheduler known to the authors, designed to
implement a PID controller, is FC-EDF. In this paper
we show the inadequacy of FC-EDF and propose an
improved scheduler design that allows satisfying both
transient and steady state response metrics such as
those presented above. With the new scheduler in
place, a wealth of existing control-theoretical design
techniques can be leveraged to build dynamic real-time
systems with guaranteed transient and steady-state
response.

3. FC-EDF revisited
In this section, we study the performance of the FC-
EDF [17] in the above proposed framework. It was
shown that FC-EDF rendered satisfactory performance
in term of the classical (steady state) metrics such as
the average deadline miss-ratio (Ma) [17]. However, a
FC-EDF may fail to meet the specs in Table 1, due to
control saturation or system modeling errors, as shown
by experiment results (see Section 3.3). This motivates
us to modify FC-EDF so that better system
performance could be achieved in the proposed metrics
(see Section 4).

3.1. Overview of the FC-EDF
FC-EDF is a scheduling algorithm that integrates PID
(proportional-integral-derivative) feedback control
with an EDF scheduler [5]. The design and evaluation
based on traditional metrics were presented in [17].
The FC-EDF scheduler (Figure 1) is composed of a
PID controller, a Service Level Controller (SLC), an
Admission Controller (AC) and a basic EDF scheduler.
The EDF scheduler schedules the accepted tasks
according to the EDF policy. FC-EDF features a
feedback control loop as follows.
• The system deadline miss-ratio MR(t) is

periodically monitored (with a sampling period
SP) and fed back to the PID controller. Note that
monitored MR(t) is defined in the time window (t-
SP, t), where SP can be different from the miss-
ratio window MW in the specs (Table 1).

• The PID controller compares the current MR(t)
with the miss-ratio set point MRs to get an error
E(t), and maps it to the required change in the total

requested CPU utilization ∆U(t) according to the
PID control function,

∆U(t) = KP • (E(t) + KI•Σ IWE(τ)
 + KD• (E(t)-E(t-DW))/DW)

where KI, KP, and KD are controller parameters,
and DW is the size of the derivative time window.

• SLC and AC change the total requested CPU
utilization of the system by estimated ∆U(t) based
on the estimated task execution times. In
particular, SLC changes the QoS levels of
admitted tasks to adjust the load in the system, and
AC adapts admission/rejection decisions to affect
the load flowing into the system.

Controller design was based on a mathematical model
presented in [17].

3.2. Testing Configurations
The workload generator generates a random set of
periodic tasks to a real-time system simulator [17]
according to the specified load profiles. Each periodic
task is characterized by a period P (the deadline of
each task instance equals its period), a starting time, a
finishing time, a set of worst-case execution times
{ WCETi | i = 0,1}, a set of best-case execution times
{ BCETi | i = 0,1}, and a set of estimated execution
times {EETi | i = 0,1}. WCETi, BCETi, and EETi are
the worst-case, best-case, and estimated execution
times of QoS level i, respectively. Only the estimated
execution time of each task is known to the scheduler.
The actual execution time of each task is unknown and
can deviate significantly from the estimation. Tasks’
periods are harmonious with the least common
multiple LCMp=2400 time-units. Regarding each time
unit as equivalent to one millisecond, we have
LCMp=2.4 sec. For the step-load SL(0, 200%), tasks

arrive simultaneously at the beginning of each
experiment, and each task’s actual execution time
equals the worst-case execution time (unknown to the
scheduler). The total system load (requested CPU
utilization) is close to 200%. The ramp-load RL(100%,
400%, 60 sec) is instantiated with a set of tasks (with a
total load close to 100%) arrives at time 0, and a new
task arrives every 0.64 sec afterwards until the system
load reaches 400% by 60 sec.

Set Point 1%
SP 2.4 sec
KP 0.25
KI 0.1
KD 0

Table 2. FC-EDF configuration

During each run in the experiment, a miss-ratio
analyzer (note the miss-ratio analyzer is part of the
testing environment and different from the monitor of
the FC–EDF) measured the miss-ratio MR(t) and
derived the miss-ratio profile. The sampling period of
the analyzer is MW=2.4 sec as required by the specs. A
sampled trace of the CPU utilization U(t) is also
measured at the same frequency in the experiments for
reference. AC was turned off in the experiments and
SLC is the only actuator in the experiments. The
configuration of the tested FC-EDF is listed in Table 2.
Note that Ms = 1% ���� WR�DYRLG�&38�underutilization
as explained in [17] and later in this section. Load
SL(0, 200%) was used to stress the system. The
experiment consisted of 20 repeated runs and each run
lasted 20 minutes.

3.3. Instability of FC-EDF
In the experiments, FC-EDF performed well on
average miss-ratio, which equals (with 90% confidence
interval) 0.9802%(±0.0128%). However, experiments
also demonstrated that FC-EDF was unstable and
therefore cannot satisfy the specs. For example, in a
typical case, plotted in Figure 2, the system entered a
transient state and MR(t) overshot to 50.8% in response
to the step load. FC-EDF then decreased task QoS
levels to reduce the system load. However, although
MR(t) = 0% most of the time after 16.8 sec, the system
also suffered from cyclic deadline misses with
MR(t)=4.5%. In control theory, this behavior is called a
limit cycle. It is caused by saturation of the controller.
The miss-ratio feedback control loop suffers a control
saturation problem because the feedback is geared to
measure overload only, but not underutilization. When
the system is overloaded, the measured MR(t) is
representative of the degree of overload. However, it is
insensitive to the degree of underutilization when the
system is underutilized (MR(t) becomes identically
0%). Thus, systems with 70% utilization and 5%

PID Controller Service Level
Controller

Admission
Controller

EDF
Scheduler CPU

FC - EDF

Accepted Tasks

Submitted Tasks

MR s MR(t)
Completed Tasks

Figure 1 FC - EDF Scheduling Algorithm

∆ U QoS
Adjustment

Admission/
Rejection

EDF
Scheduling

utilization will appear the same to the controller. The
control saturation problem prevents a 0% set point
because it can underutilize CPU and reduce system
throughput [17]. When the system has a 0% miss ratio,
but extremely low utilization, a feedback control
scheduler with a zero set point will treat it as the
correct state (as illustrated in Figure 3). Small set point
values cause the controller to oscillate between
underutilized and overloaded system states.

It is therefore desired to apply a feedback control
of the CPU utilization in addition to the miss-ratio. In
the utilization control scheme, the system monitors the
CPU utilization and dynamically adjusts the task QoS
levels. With a set point lower than the utilization bound
of the system, the system can achieve a 0% steady state
miss-ratio. Utilization control has been applied
successfully to computing systems such as web server
QoS [11] and multimedia player [8]. Interestingly,
utilization control suffers from the complementary
control saturation problem. It saturates when the
system becomes overloaded as the CPU utilization
becomes identically 100%. A consequence of the
utilization-control saturation can be a longer settling
time when the server is heavily overloaded. For
example, the utilization control illustrated in Figure 4
has a longer settling time than the miss-ratio control
with the same control parameters as in Figures 2 and 3.
Another problem with utilization control is the

difficulty in computing the schedulable utilization
bound. Although existing real-time scheduling theory
(such as periodic rate-monotonic/EDF analysis [16],
and aperiodic analysis [6]) has derived utilization
bounds under different workload assumptions, it is still
difficult to decide the utilization bound in many
complex systems with unpredictable workload. Below,
we propose a scheme that combines the advantages of
both miss ratio control and utilization control while
avoiding their limitations.

4. FC-EDF2 scheduling algorithm
Because a FC-EDF may not satisfy the desired specs
due to implementation constraint (control saturation) or
system modeling errors, we now propose a new
scheduling algorithm FC-EDF2 which is able to meet
desired specs such as stability and transient
performance.

4.1. The FC-EDF2

In this section, we present the design of FC-EDF2

(Figure 5), which can achieve stability and the desired
transient and steady-state specs. FC-EDF2 achieved
stability by integrating miss-ratio control and
utilization control. The intuition behind this
combination lies in noting that the saturation
conditions of the two control loops are mutually
exclusive. Since control saturation is the main reason
for instability of FC-EDF, the hybrid control scheme is
expected to fix this problem. In this hybrid control
scheme, both the miss-ratio MR(t) and the CPU
utilization U(t) are monitored. At each sampling point,
MR(t) and U(t) are fed back to two separate PID
controllers, the miss-ratio controller (with a set-point
MRs) and the utilization controller (with a set point Us),
respectively. Each controller then computes its control
signal independently. The control signal of the
utilization control ∆Uu(t) is compared with the miss-
ratio control signal ∆Um(t), and the smaller control

PID Controller
Service Level

Controller

Admission
Controller

EDF
Scheduler

CPU

FC-EDF

Accepted Tasks

Submitted Tasks

MRs

MR(t)

Completed Tasks

∆U

PID ControllerUs

Min

U(t)

Figure 5. FC-EDF2 scheduling algorithm

∆Um

∆Uu

0 500 1000

Time (second)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s-
R

at
io

, C
PU

 u
til

iz
at

io
n

Figure 2. Miss-Ratio MR(t) and Utilization U(t) of FC-EDF
(Miss-Ratio Control; Set Point: 1%; (KP, KI)=(0.25, 0.1))

U(t)
MR(t)

0 500 1000

Time (second)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s-
R

at
io

, C
PU

 u
til

iz
at

io
n

Figure 3. Miss-Ratio MR(t) and Utilization U(t) of FC-EDF
(Miss-Ratio Control; Set Point: 0%; (KP, KI)=(0.25, 0.1))

U(t)
MR(t)

0 500 1000

Time (second)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s-
R

at
io

, C
PU

 u
til

iz
at

io
n

Figure 4. Miss-Ratio MR(t) and Utilization U(t) of FC-EDF
(Utilization Control; Set Point: 90%; (KP, KI)=(0.25, 0.1))

U(t)
MR(t)

signal ∆U(t)=min(∆Uu(t), ∆Um(t)) is sent to actuators
(AC and SLC). The rationale of the hybrid scheme is to
combine the advantages of the two controls.

First, FC-EDF2 can achieve stability by canceling
control saturation via dynamically switching
controllers. When the system enters the saturation
range of utilization control (U(t)>100%), the miss-ratio
control will dominate and thus achieve faster control
(i.e., a shorter settling time). On the other hand, when
the system enters the output saturation range of the
miss-ratio control (U(t) < UB), the utilization control
will take over and achieve zero deadline miss-ratio.
Since UB ≤ 100%, there is no overlap between the
saturation ranges of the utilization control and the
miss-ratio control. Consequently, the hybrid control
always keeps the control alive. In addition, we used
two techniques, the min operator and integrator anti-
windup technique [11] to avoid oscillation during mode
switching between the two controls. The min operator
on the two control signals achieved smooth transition
between the two controls. The integrator anti-windup
requires a (miss-ratio or utilization) controller to turn
off the integration of errors once it loses in the min
operation (i.e., its signal is larger than the other control
signal).

The second advantage of the hybrid control (with
the min operator) is that it does not require an accurate
utilization bound to guarantee satisfactory
performance. Suppose the system utilization bound
UB(t) is approximate or varies at run time, the
utilization control is effective when the actual
utilization bound UB(t) ≥ Us. However, when the
UB(t)<Us, the miss-ratio control dominates (due to the
large and/or reoccurred deadline misses) and bounds
the performance of the scheduler.

Following our control-theory-based framework,
our next step is to establish an analytical model for the
control system. For example, preliminary results on the
modeling of FC-EDF and a web server have been
presented in [17] and [4], respectively. Based on the
performance specs and a system model, we can use
existing control design methods [11][14] to calculate
the values of the control parameters that can satisfy the
specs based on the new metrics. The design process
followed standard control design method [11] and its
full presentation is out of scope of this paper. Instead
we present the experimental results that demonstrate
that FC-EDF2 can be tuned to satisfy the specs.

4.2. Control Gains
Experiments were run for different combinations of
control gains (KP, KI). Gain ranges were obtained first
by tuning a controller theoretically [11] using the
system model described in [17] then by choosing a
range around the computed gain value to demonstrate
performance trends as the gain changes. The derivative
control gain KD=0 in all the experiments because it is
not suitable for systems with high noise. MRs = 5%,
and Us = 90%. Both the step-load SL(0, 200%) and
ramp-load RL(100%, 400%, 60 sec) were used in these
experiments; 20 runs were made for each combinations
of (KP, KI, load-profile). Each run lasted for 20 min. A
fixed sampling period SP=2.4 sec is used in all the runs
of experiments of this section. All the presented data
(except for stability) is the average value (with 90%
confidence interval) of 20 runs. Note that steady-state
miss-ratio is relevant only when SMB > 0. When
SMB=0% (as in our specs), the steady-state miss-ratio
Ms is always 0% when the system is stable; and Ms is
undefined when the system is unstable. Sensitivity was
not measured in the experiments and will be part of our
future work.

4.2.1. Stability
As defined in section 2.2, a real-time system is stable if
it can always settle down to a steady state in finite
time. According to the specs of Table 1, the system is
in steady-state if MR(t)=0%. A system unstable if there
exists a run in which the system fails to enter and stay
in the steady state. For example, an unstable case of
FC-EDF2 (with (KP, KI) = (1.0, 0.9)) is illustrated in
Figure 7. The system never settled to a steady state
with MR(t)=0% after a step load SL(0, 200%) arrived.
The system performance oscillated at a high frequency,
which was an indication of frequent changes in task
QoS levels. QoS oscillation at high frequency can be
undesirable. For example, an unstable video player
may frequently change its frame size and never settle
down to a fixed frame size and desired frame rate. In
contrast, Figure 6 illustrates that FC-EDF2 achieved

0 500 1000

Time (second)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s-
R

at
io

, C
P

U
 u

ti
liz

at
io

n

Figure 6. Miss-Ratio MR(t) and Utilization U(t) of FC-EDF2
(Hybrid Control; (KP, KI)=(0.25, 0.1))

U(t)
MR(t)

0 500 1000

Time (second)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s-
R

at
io

, C
P

U
 u

ti
liz

at
io

n

Figure 7. Miss-Ratio MR(t) and Utilization U(t) of FC-EDF2
(Hybrid control; (KP, KI)=(1.0, 0.9))

U(t)
MR(t)

stability in response to the same load when (KP, KI) =
(0.25, 0.1). The system settled to 0% miss-ratio by 19.2
sec when the miss-ratio control dominated the control
in the beginning, and the system maintained a 0%
steady-state miss-ratio afterwards because the
utilization control took over. Table 3 shows the
stability region of control gains of FC-EDF2. The
system became unstable when large control gains
caused the controller to overreact to performance
variations. All the unstable cases occurred in response
to the step load SL(0, 200%), which indicated that step
loads is more difficult to handle than ramp loads.

(KI,KP) 0.025 0.05 0.1 0.25 0.5 0.75 1.0
0.1 S S S S S U U
0.5 S S S S U U U
0.9 S S S U U U U

Table 3. Stability of FC-EDF2 (S: stable, U: unstable)

4.2.2. Settling-Time (Ts)
The settling time describes the agility of the system in
response to overload. The settling times of FC-EDF2 in
response to the step-load SL(0, 200%) and ramp-load
RL(0, 400%, 60 sec) are illustrated in Figures 8 and 9,
respectively. When the control gains were small, the
settling-time decreased as the control gains increased.
This is because the controllers of FC-EDF2 can change
the system load by a higher magnitude for each
sampling period if their control gains are higher.
However, as the control gains became large, the
settling time started to increase due to excessive

oscillations. The settling time eventually increased to
infinity when the control gains hit the stability
boundary (Table 3) and the system became unstable.
The control gains had a significant impact on the
settling time. For example, when (KP, KI)=(0.025,
0.5), the settling time in response to load RL(100%,
400%, 60 sec) is 133.5600(±7.6826) sec, while the
settling time in response to the same load is only
28.8000(±0.3011) sec when (KP, KI)=(0.25, 0.5). Note
although the (KP, KI)=(0.75, 0.5) has a even shorter
settling time of 10.4400(±2.1973) sec in response of
RL(100%, 400%, 60 sec), the control gains caused
instability in response to SL(0, 200%). Similarly, the
maximum settling time in response to load SL(0,
200%) is 603.6000(±85.3359) sec (when (KP,
KI)=(0.025, 0.9)), which is more than 50 times of the
minimum settling time of 12.0000(±0.0000) sec in
response of the same load (when (KP, KI)=(0.5, 0.1)).

4.2.3. Overshoot (Mo)
The overshoot in response to RL(100%, 400%, 60 sec)
and SL(0, 200%) is illustrated in Figures 10(a) and
10(b), respectively. In the ramp-load case, the system
overshoot decreased as the controller gains increased.
This is because the scheduler with small control gains
adapted the system load slowly and consequently
allowed the miss-ratio to increase significantly.
However, when the control gains became too high,
overshoot started to increase due to excessive
oscillation. The control gains significantly affected the

0.0 0.5 1.0

KP

0

50

100

150

T
s

(s
ec

)

Figure 8 Settling Time vs. Control Gains
Load: RL(100%, 400%, 60sec)

0.0 0.2 0.4 0.6

KP

0

200

400

600

T
s

(s
ec

)

Figure 9 Settling Time vs. Control Gains
Load: SL(0, 200%)

KI=0.1
KI=0.5
KI=0.9

0.0 0.5 1.0

KP

0

20

40

60

80

100

M
o

(%
)

Figure 10(a) Overshoot vs. Control Gains
Load: RL(100%, 400%, 60sec)

0.0 0.2 0.4 0.6

KP

0

20

40

60

80

100

M
o

(%
)

Figure 10(b) Overshoot vs. Control Gains
Load: SL(0, 200%)

KI=0.1
KI=0.5
KI=0.9

system overshoot. When the control gains were (0.025,
0.5), the system overshot to 89.8583(±1.5399)% in
response to load RL(100%, 400%, 60sec), i.e., most of
task instances missed their deadlines during the worst
sampling period. In contrast, in response to the same
load, only 25.0147(±1.1180)% of the task instances
missed their deadlines in the worst sampling period
when (KP, KI)=(0.5, 0.1). Different from the ramp-
load case, Figure 10b showed that the control gains had
no impact on the overshoot for the step-load. It was
47.5395(±0.8110)% for all control gains. This is
because the step-load jumped instantaneously and gave
the system no time to react before overshoot occurred.

4.2.4. Average miss-ratio (Ma)
Although average miss-ratio is not part of the
performance specs, they are also presented in Figures
11a and 11b for reference. The average miss-ratio is
defined as the number of deadline misses divided by
total number of task instances in a run. The average
miss-ratio demonstrated much smaller differences
when control gains varied, which indicates that average
miss-ratio failed to capture the significant difference in
stability and transient response of different control
gains. For example, although the system response was
extremely slow (with a settling time of
603.6(±85.3359) sec) when (KP, KI)=(0.025, 0.9) in
response to SL(0, 200%); its average miss-ratio was
only 1.5231(±0.0928)%. The miss-ratio of the system
overshot to 89.8583(±1.5399)% in response to
RL(100%, 400%, 60sec) when (KP, KI)=(0.025, 0.5),
its average miss-ratio was only 5.9901(±0.4724)%.

4.2.5. Summary: control gains
In this section, we have verified that three set of
control gains, (0.25, 0.1), (0.5, 0.1), and (0.25, 0.5), can
satisfy the specs in Table 1 when SP=2.4 sec. Among
these settings, (0.25, 0.1) is farthest away from the
unstable region of the control gains (Table 3) and
therefore are the most desirable values.

4.3. Sampling Period
In this section, we present experiments on different

sampling periods (SP). (KP, KI) were fixed at the
optimal control gains (0.25, 0.1) in all the experiments.
Due to space limitations of this paper, we only
summarize the results in the following.

• Stability: The system is stable when 2.4 ≤ SP ≤
7.2 (sec). Note that the system was unstable when
SP = 0.6 or 1.2 sec. This result is unusual because
control system performance usually improves as
SP decreases according to digital control theory
[14]. This anomaly is due to the periodicity of the
simulated real-time system. Because all the task
periods are harmonious with LCMp=2.4 sec, the
system completes a natural cycle at each time-
point divisible by LCMp (i.e., same number of
tasks enter the system every LCMp). However,
when SP<LCMp, the controller in FC-EDF2

monitors different number of tasks in different
sampling periods, and the measured miss-ratio
becomes jittery due to the different number of
tasks in different sampling periods. Note that this
effect may affect performance for periodic tasks
periods with non-harmonious periods or aperiodic
tasks. These types of workloads will be
investigated in our future research.

• Settling-time (Ts): Among the stable sampling
periods, the settling time in response to both loads
increased significantly as SP increased. This is
because the controllers with smaller sampling
period monitored and responded to load variations
at a higher rate and thus settled down to zero miss-
ratio faster.

• Overshoot (Mo): When the system was stable, the
system achieved significantly lower overshoot in
response of the ramp-load as SP decreased. This is
also because the controllers adapted faster with a
smaller sampling period. Mo keeps constant in
response to the step-load for all tested stable
sampling periods. This is also due to the
periodicity of the task arrivals. Since SP>LCMp for
all the stable sampling periods, none of the
sampling period was able to prevent overshoot that

0.0 0.5 1.0

KP

0

20

40

60

80

100

M
a

(%
)

Figure 11(a) Average Miss-Ratio vs. Control Gains
Load: RL(100%, 400%, 60sec)

0.0 0.5 1.0

KP

0

20

40

60

80

100

M
a

(%
)

Figure 11(b) Average Miss-Ratio vs. Control Gains
Load: SL(0, 200%)

KI=0.1
KI=0.5
KI=0.9

occurred before the first sampling point.

Among all the tested sampling period values, only
SP=2.4 sec can satisfy the performance specs in Table
1 when (KP, KI) = (0.25, 0.1).

4.4. FC-EDF2 summary
In section 4, we presented a scheduling algorithm FC-
EDF2 that fixed the instability problem of FC-EDF
with a hybrid controller. Experimental results verified
that the new scheduler can achieve the specs in terms
of stability, transient and steady-state performance with
correct parameters. To remain focused on scheduler
design and performance evaluation, we omitted details
regarding system modeling and controller tuning from
the discussion presented in this section. For
completeness, modeling of a real-time system as a
controlled process is described in [17]. Several
controller design techniques can be found in [11].

5. Related Work
Transient and steady-state performance of adaptive
real-time systems have received special attention in
recent years. For example, Brandt et. al. [8] evaluated a
dynamic QoS manager by measuring the transient
performance of applications in response to QoS
adaptations. Dynbench [27] included observed real-
time QoS metrics based on a time series of
measurement, which is similar to the miss-ratio
function MR(t) presented in this paper. Rosu et. al. [20]
proposed a set of performance metrics to capture the
transient responsiveness of adaptations and its impact
on applications. The paper proposed metrics that are
similar to the settling time and steady-state error.

The general framework of stability, transient
response and steady-state performance in control
theory [11] has been mostly applied in mechanical and
electrical systems. There are several works that applied
control theory to computing systems. For example,
several works [17][21][22] proposed to integrate
control system design with real-time scheduling. In
[25], a feedback-based scheduling scheme was used to
adjust CPU allocation based on application-dependent
progress monitors. [1][23][26] utilized flexible timing
constraints for performance adaptation in real-time
control systems. [3][9][12][15] presented QoS control
architectures for multimedia and communication
systems. In [2], a PI controller was applied in resource
allocation to achieve web server QoS. However, to the
authors’ knowledge, no unified framework has been
proposed that integrates the specs of dynamic
responses with the design of QoS control for a
computing system. Such a framework is presented in
this paper. A scheduling algorithm is proposed to map

theoretical controller design to a scheduler
implementation.

6. Conclusions and Future Work
In this paper, we propose a control-theory-based
framework. This framework enable system designers to
specify the performance specs (stability, transient and
steady-state performance), and apply existing control
methods to analytically design an adaptive real-time
system to achieve the specs. We extended existing
performance metrics of adaptive real-time systems [20]
and demonstrate that the metrics can be mapped to the
dynamic responses of a control system. Such mapping
provides a foundation for further control design of QoS
adaptation in real-time systems. The paper also
identifies stability as a critical requirement for adaptive
real-time systems. The framework is applied to the
design of an adaptive real-time scheduling algorithm to
satisfy a set of performance specs. An existing
scheduling algorithm FC-EDF was discovered to be
unstable due to problems with its control design. We
presented a new scheduling algorithm FC-EDF2 that
achieved stability with a hybrid controller that
achieved stability. Experiments verified that FC-EDF2

could achieve the performance specs. In the future, we
will apply the framework to more complex systems
such an adaptive real-time web server.

Acknowledgements
The authors would like to thank their shepard Daniela
Rosu and anonymous reviewers for their valuable
suggestions to improve the paper.

7. Reference
[1] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, “QoS
negotiation in real-time systems and its application to
automatic flight control,” IEEE Real-Time Technology and
Applications Symposium, June 1997.
[2] T. F. Abdelzaher and N. Bhatti, “Adaptive content
delivery for web Server QoS,” International Workshop on
Quality of Service, June 1999.
[3] T. F. Abdelzaher and K. G. Shin, "End-host Architecture
for QoS-Adaptive Communication," IEEE Real-Time
Technology and Applications Symposium, Denver, Colorado,
June 1998.
[4] T. F. Abdelzaher and C. Lu, "Modeling and Performance
Control of Internet Servers," 39th IEEE Conference on
Decision and Control, Sydney, Australia, December 2000.
[5] T. F. Abdelzaher, "An Automoated Profiling Subsystem
for QoS-Aware Services," IEEE Real-Time Technology and
Applications Symposium, Washington D.C., June 2000.
[6] T. F. Abdelzaher, "A Schedulable Utilization Bound for
Aperiodic Tasks," University of Virginia, Technical Report
CS-2000-21, August 2000.
[7] G. Beccari, et. al., “Rate Modulation of Soft Real-Time
Tasks in Autonomous Robot Control Systems,” EuroMicro
Conference on Real-Time Systems, June 1999.

[8] S. Brandt and G. Nutt, “A dynamic quality of service
middleware agent for mediating application resource usage,”
19th IEEE Real-Time Systems Symposium, December 1998.
[9] S. Cen, "A Software Feedback Toolkit and its Application
In Adaptive Multimedia Systems," Ph.D. Thesis, Oregon
Graduate Institute, October 1997.
[10] J. Eker: "Flexible Embedded Control Systems-Design
and Implementation." PhD-thesis, Lund Institute of
Technology, December 1999.
[11] G. F. Franklin, J. D. Powell and A. Emami-Naeini,
Feedback Control of Dynamic Systems (3rd Ed.), Addison-
Wesley, 1994.
[12] D. Hull, A. Shankar, K. Nahrstedt, and J. W. S. Liu, “
An end-to-end QoS model and management architecture,”
IEEE Workshop on Middleware for Distributed Real-Time
Systems and Services, December 1997.
[13] M. Humphrey, S. Brandt, G. Nutt, and T. Berk, “The
DQM architecture: middleware for application-centered QoS
management,” IEEE Workshop on Middleware for
Distributed Real-Time Systems and Services, December
1997.
[14] B. C. Kuo, Digital Control Systems (2nd Ed.), Oxford
University Press, 1992.
[15] B. Li, D. Xu, K. Nahrstedt, J. W. S. Liu, “End-to-End
QoS Support for Adaptive Applications Over the Internet”,
SPIE International Symposium on Voice, Video and Data
Communications, November 1998.
[16] C. L. Liu and J. W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Environment,”
JACM, 20(1), 1973.
[17] C. Lu, J. A. Stankovic, G. Tao and S. H. Son, “Design
and Evaluation of a Feedback Control EDF Scheduling
Algorithm,” 20th IEEE Real-Time Systems Symposium,
December 1999.
[18] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek,
“Practical solutions for QoS-based resource allocation
problems,” 19th IEEE Real-Time Systems Symposium,
December 1998.
[19] D. Rosu, K. Schwan, and S. Yalamanchili, “FARA–a
framework for adaptive resource allocation in complex real-
time systems,” IEEE Real-Time Technology and Applications
Symposium, June 1998.
[20] D. Rosu, K. Schwan, S. Yalamanchili and R. Jha, "On
Adaptive Resource Allocation for Complex Real-Time
Applications," 18th IEEE Real-Time Systems Symposium,
Dec., 1997.
[21] M. Ryu and S. Hong, “Toward Automatic Synthesis of
Schedulable Real-Time Controllers”, Integrated Computer-
Aided Engineering, 5(3) 261-277, 1998.
[22] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On
Task Schedulability in Real-Time Control Systems,” 17th

IEEE Real-Time Systems Symposium, December 1996.
[23] K. G. Shin and C. L. Meissner, “Adaptation and
Graceful Degradation of Control System Performance by
Task Reallocation and Period Adjustment,” EuroMicro
Conference on Real-Time Systems, June 1999.
[24] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao, “The
Case for Feedback Control Real-Time Scheduling,”
EuroMicro Conference on Real-Time Systems, June 1999.
[25] D. C. Steere, et. al., "A Feedback-driven Proportion
Allocator for Real-Rate Scheduling," 3rd Symposium on
Operating Systems Design and Implementation, Feb 1999.

[26] L. R. Welch, B. Shirazi and B. Ravindran, “Adaptive
Resource Management for Scalable, Dependable Real-time
Systems: Middleware Services and Applications to
Shipboard Computing Systems,” IEEE Real-time Technology
and Applications Symposium, June 1998.
 [27] L. R. Welch and B. A. Shirazi, "A Dynamic Real-time
Benchmark for Assessment of QoS and Resource
Management Technology," IEEE Real-time Technology and
Applications Symposium, June 1999.

