
QeDB: A Quality-Aware Embedded Real-Time Database ∗

Woochul Kang, Sang H. Son, and John A. Stankovic

Department of Computer Science

University of Virginia

{wk5f,son,stankovic}@cs.virginia.edu

Abstract

QeDB is a database for data-intensive real-time applica-

tions running on flash memory-based embedded systems. Cur-

rently, databases for embedded systems are best effort, provid-

ing no guarantees on its timeliness and data freshness. More-

over, the existing real-time database (RTDB) technology can

not be applied to these embedded databases since they hy-

pothesize that the main memory of a system is large enough

to hold all database, which can not be true in data-intensive

real-time applications. QeDB uses a novel feedback control

scheme to support QoS in such embedded systems without

requiring all data to reside in main memory. In particular,

our approach is based on simultaneous control of both I/O

and CPU resource to guarantee the desired timeliness. Un-

like existing work on feedback control of RTDB performance,

we actually implement and evaluate the proposed scheme in

a modern embedded system. The experimental results show

that our approach supports the desired timeliness of transac-

tions while still maintaining high data freshness compared to

baseline approaches.

1 Introduction

Recent advances in sensor technology and wireless con-

nectivity have paved the way for next generation real-time

applications that are highly data-driven, where data represent

real-world status. For many of these applications, data from

sensors are managed and processed in application-specific

embedded systems with certain timing constraints. For exam-

ple, control units of an automobile collect and process large

volume of real-time data not only from internal sensors and

devices [29], but also from external environments such as

nearby cars and intelligent roads [14][1]. As another example,

PDAs carried by firefighers for search-and-rescue task collect

real-time sensor data from the burning building and peer fire-

fighters; it also processes the data to check the dynamically

changing status of the fire scene and alert the potential danger

to firefighters in a timely fashion [2][3].

An embedded database [28] is an integral part of such ap-

plications or application infrastructures. Unlike traditional

DBMSs, database functionality is delivered as part of the

application (or application infrastructure) and they run with

∗This research work was supported by NSF CNS-0614886 and KOSEF

WCU Project R33-2008-000-10110-0.

or as part of the applications in embedded systems. How-

ever, current off-the-shelf embedded databases such as Berke-

ley DB [7] and SQLite [8] are unaware of timing and data

freshness requirements, showing poor performance in these

applications. Unfortunately, applying the existing RTDB ap-

proaches to these embedded databases have problems since

they do not consider the constraints and characteristics of

the embedded systems. In particular, most previous RTDBs

have been main-memory databases and ignore the effect of

accessing data in persistent secondary storages such as high-

capacity flash memories, which is de facto standard in mod-

ern embedded systems. In resource constrained embedded

systems, it is not always feasible to have large enough main-

memory to hold the entire data, especially when applications

are data-intensive. Even with the advancement of proces-

sors, memory, and storage, these embedded systems are rel-

atively resource-constrained due to cost, form factor, battery

lifetime, and the increased size of data and applications. In

main-memory database systems, requests to a RTDB incur

only CPU load without I/O and the timeliness of transactions

are determined only by CPU loads. In contrast, in non-main-

memory database systems, the response time of transactions

are determined not only by CPU load, but also by I/O latency,

making previous RTDB approaches non-effective.

To address this problem, we have designed and imple-

mented a real-time embedded database (RTEDB), called

QeDB(Quality-aware Embedded Database). In our earlier

work, we proposed an I/O-aware approach in guaranteeing

QoS in RTEDBs [19]. However, it is based on simulation and

some assumptions are too rigid to implement in embedded

systems with general purpose OS such as embedded Linux.

Hence, there were limitations in modeling real system behav-

iors and workloads. QeDB has been designed as an embedded

database for embedded systems with a secondary storage such

as high-capacity flash memory. It has been implemented by

extending Berkeley DB [7], which is a popular open-source

embedded database, to support the required QoS. To the best

of our knowledge, this is the first paper on providing QoS for

embedded databases with a real implementation.

The contributions of this paper are as follows,

1. real-time transaction model in RTEDBs,
2. an architecture based on feedback control to satisfy a

given QoS specification using Multiple-Inputs/Multiple-

Outputs (MIMO) control technique,
3. the implementation and evaluation of the proposed ap-

proach on a real embedded device with realistic work-

loads.

In embedded systems, the database runs on the same sys-

tem as a part of the real-time application. Therefore, in QeDB,

a real-time transaction is defined as a real-time task that ac-

cesses data through its RTEDB with optional transaction guar-

antees. For example, real-time transactions of firefighter’s

PDA run periodically to retrieve the up-to-date sensor data

by issuing requests to underlying RTEDB and also perform

computation tasks such as checking the potential dangers, and

finding safe paths. Because real-time transactions consist of

both data accesses and computation with the retrieved data,

the changes in the runtime environment of RTEDB can affect

the timeliness of both I/O and computation in transactions.

For instance, as will be seen in Section 3, decreasing the size

of the buffer increases not only the average I/O response time,

but also the CPU load because more frequent buffer manage-

ment activities, e.g., searching for least-recently-used pages,

are required due to low buffer hit ratio. This close interaction

of computation and I/O operations for data access implies that

the eventual QoS of transactions can be guaranteed only when

both I/O and computation are considered simultaneously.

In QeDB, the metrics of QoS are tardiness of transactions

and freshness of data, which may pose conflicting require-

ments. QeDB achieves the desired QoS using a feedback con-

trol technique. Feedback control has recently been applied

to manage RTDB performance in the presence of dynamic

workloads [10][18]. In particular, QeDB exploits a Multi-

ple Inputs/Multiple Outputs (MIMO) modeling and controller

design technique to capture the close interactions of multiple

inputs of the system (CPU load and buffer hit ratio) and the

multiple system outputs (I/O tardiness and computation tardi-

ness). The MIMO controller adjusts both CPU load and buffer

hit ratio simultaneously.

The evaluation results demonstrate that MIMO control of

QoS in QeDB is significantly more effective than baseline ap-

proaches. In particular, QeDB makes a better negotiation be-

tween the timeliness of transactions and the freshness of data

by providing proper amount of resources in a robust and con-

trolled manner.

The rest of the paper is organized as follows. Section 2

presents the overview of real-time transaction and data model

in QeDB. Section 3 describes the QeDB architecture and feed-

back control system. Implementation issues are discussed in

Section 4. Section 5 shows the details of the evaluation set-

tings and presents the evaluation results. Related work is pre-

sented in Section 6 and Section 7 concludes the paper and

discusses future work.

2 Overview of QeDB

2.1 System Model

QeDB targets real-time embedded systems having a high-

capacity flash memory as a secondary storage. Figure 1 shows

the software stack of an embedded system, which runs a real-

time application with support from a RTEDB. A buffer is

located in the main memory and it is a cache between the

slow secondary storage and the CPU. The buffer is global,

and shared among transactions to reduce the data access time.

An I/O request from application(s) for a data object incurs I/O

operations to flash memory only if the data object is not found

in the buffer.

Application(s)

buffer

OS(H/W)

QeDB

flash memory

I/
O

g
et

/p
u
t

Figure 1. A real-time application with support

from a RTEDB.

2.2 Data and Transactions

Unlike traditional DBMSs, QeDB does not support com-

plex query processing on data. Instead, QeDB is a key/value

store, which supports efficient and concurrent accesses to

data1. While the interface put(key k1,value v) is used for the

storage of data v with key k1, the interface get(key k2) is used

for the retrieval of data with key k2. Operations get and put

involve mostly I/O operations between the buffer and the sec-

ondary storage to fetch and flush data. However, it also in-

volves computation such as manipulating buffer cache, look-

ing up indexes, and locking data and index pages. In this pa-

per, I/O operations refer to put and get operations in QeDB,

which include not only raw I/O operations to flash memory,

but also computation required for the I/O operations.

Data objects in QeDB can be classified into two classes,

temporal and non-temporal data. Temporal data objects are

updated periodically by update transactions. For example,

an update transaction is issued when a new sensor reading

becomes available. In contrast to update transactions, user

transactions may read and modify both temporal and non-

temporal data objects. All transactions are canned transac-

tions, whose operations are pre-defined at design time of the

application. Their operations are hard-coded into the applica-

tions, and invoked dynamically at runtime. The characteris-

tics of a transaction such as execution time, and access pat-

tern are known at the design time. However, the workload

and data access pattern of the whole database is unpredictable

and changes dynamically because the invocation frequency of

each transaction is unknown and multiple transactions exe-

cute concurrently. Hence, their response time can be unpre-

dictable. Transactions access data through QeDB and transac-

tional properties such ACID (atomicity, consistency, isolation,

and durability) between data accesses are provided if they are

specified by the applications.

Program 1 shows an example of a transaction that is in-

voked periodically in a PDA of firefighters to check the struc-

tural integrity of the burning building2. Note that it not only

1QeDB uses the same data storeage and retrieval mechanism of underlying

Berkeley DB without much extension.
2Some details are not shown for clarity and readability.

has I/O operations to get/put data, but also computation that

checks the integrity of the structure. The logical consistency

of the data accesses can be guaranteed by enclosing all or

part of the transaction with begin transaction and commit (or

abort). However, logical consistency is not required for all

transactions and it is application-dependent.

Program 1 A transaction checking the integrity of a structure.
trx_check_structure_integrity()

{

/* A list of keys to sensor data to process */

DBT key_displacement_sensors={Sen_1,Sen_2,..., Sen_n}

/* memory to copy in sensor data */

DBT data_sensors[NUM_SENSORS];

/* Some computation */

init();

/* perform I/Os by reading in data from the DB */

for (i=0; i< NUM_SENSORS; i++){

data_sensors[i]= get(key_displacement_sensors[i]);

}

/* computation */

status = analyze_integrity(data_sensors);

/* another I/O */

put(key_status, status);

}

2.3 Real-Time Transactions

Transactions can be classified into real-time transactions

and non-real-time transactions. Real-time transactions are

real-time tasks, which have deadlines on their completion

time, and they have higher priority than non-real-time transac-

tions. For instance, the transaction in Program 1 should report

the status of the structural integrity of the burning building

within a specified deadline; otherwide, the firefighters may

lose a chance to escape from the dangerous place that might

collapse. We apply soft deadline semantics, in which trans-

actions still have value even if they miss their deadline. For

instance, having late report on the status of the building is

better than having no report due to the abortion of the trans-

action. Soft deadline semantics have been chosen since most

data-intensive real-time applications accessing databases are

inherently soft real-time applications. Because of concurrent

accesses to data and their complex interactions such as lock-

ing in databases, hard real-time is hard to achieve. The pri-

mary focus of this paper is the QoS management that dynam-

ically minimizes the tardiness of these real-time transactions

at runtime.

3 QoS Management in QeDB

Next, we describe our approach for managing the perfor-

mance of QeDB in terms of QoS. First, we start by defining

performance metrics in Section 3.1. An overview of the feed-

back control architecture of QeDB is given in Section 3.2, fol-

lowed by the description of the QoS controller design.

3.1 Performance Metrics

The goal of the system is to maintain QoS at a certain level.

The most common QoS metric in real-time systems is dead-

line miss ratio. The deadlines of transactions are application-

specific requirement on the timeliness of the transactions, and

the deadline miss ratio indicates the ratio of tardy transac-

tions to the total number of transactions. However, it turned

out deadline miss ratio is problematic in RTEDBs because

the rate of transaction invocation in embedded databases is

very low compared to conventional database systems, which

handle thousands of transactions per second. For example, a

real-time transaction of firefighter’s PDA, which checks the

status of the building, can be invoked on a per-second basis

[16]. With this small number of transactions, the confidence

interval of deadline miss ratio can be very wide [11]. Instead,

QeDB controls the QoS based on the average tardiness of the

transactions. For each transaction, we define the tardiness by

the ratio of response time of the transaction to its respective

(relative) deadline.

tardiness =
response time

deadline
. (1)

Another QoS metric, which may pose conflicting require-

ments, is data freshness. In RTDBs, validity intervals are used

to maintain the temporal consistency between the real-world

state and sensor data in the database [18]. A sensor data ob-

ject Oi is considered fresh, or temporally consistent, if cur-

rent time-timestamp(Oi) ≤ avi(Oi), where avi(Oi) is the ab-

solute validity interval of Oi. For Oi, we set the update pe-

riod Pi = 0.5 × avi(Oi) to support the sensor data freshness

[31]. QeDB supports the desired data freshness in terms of

perceived freshness (PF) [18].

PF =
Nfresh

Naccessed
, (2)

where Nfresh represents the number of fresh data accessed by

real-time transactions, and Naccess represents total number of

data accessed by real-time transactions. When overloaded, the

data freshness could be traded off to improve the tardiness as

long as the target freshness is not violated.

3.1.1 I/O deadline and CPU deadline

The tardiness of a transaction is determined by the response

time of both I/O operations and the computation in the trans-

action. In particular, in a data-intensive real-time application,

the I/O response time is a critical factor. The tardiness of a

transaction in Equation 1 tells how much a system is over-

loaded, but it does not tell which resource is overloaded; it

can be either I/O or CPU. Therefore, the deadline of a trans-

action is divided into I/O deadline and CPU deadline to mea-

sure the tardiness of I/O and CPU activities separately. In a

transaction, I/O deadline and CPU deadline are the maximum

total time allocated to all I/O operations and all computation

activities, respectively. Initially, the I/O deadline and the CPU

deadline of a transaction are determined based on the pro-

filed minimum execution time of I/O operations, EXECi/o,

and the computation activities, EXECcpu, in the transaction.

EXECi/o includes the overhead which is proportional to the

number of I/O operations, e.g., looking up the buffer cache,

locking index/data pages, and etc., but it does not include ac-

tual I/O time to access data in flash memory since the buffer

hit ratio is assumed 100%. EXECcpu is the minimum ex-

ecution time of the transaction except the EXECi/o. Given

EXECi/o and EXECcpu, the slack time of a transaction can

be obtained:

(EXECi/o + EXECcpu) × sf = deadline, (3)

where sf is a slack factor, and it should be greater than one

for a transaction to be schedulable in the given system. Hence,

the I/O deadline and CPU deadline are set initially as follows;

deadlinei/o = EXECi/o × sf, (4)

deadlinecpu = EXECcpu × sf (5)

= deadline − deadlinei/o (6)

The definition of tardiness in Equation 1 is extended to tardi-

ness in I/O and CPU as follows:

tardinessi/o =
response timei/o

deadlinei/o
(7)

tardinesscpu =
response timecpu

deadlinecpu
(8)

However, assigning the same static slack factor for both

I/O and CPU deadline can be problematic since the ideal slack

times for I/O operations and computation change as the sys-

tem status changes. For example, when one of the resource is

overloaded while the other is not, it would be desirable to al-

locate more slack time to the resource since the other resource

is under-utilized. To this end, QeDB dynamically adjusts I/O

and CPU deadlines in each sampling period by Algorithm 1.

Algorithm 1: Run-time adaptation of deadlines.

Input: average tardinessi/o and tardinesscpu

Input: τi/o and τcpu

if tardinessi/o ≥ tardinesscpu then
τi/o + +; τcpu = 0;

δd = α × τi/o;

increase deadlinei/o by δd%

else
τcpu + +; τi/o = 0;

δd = α × τcpu;

decrease deadlinei/o by δd%

end

deadlinecpu = deadline − deadlinei/o

In Algorithm 1, I/O and CPU deadlines are adjusted by

δd% on every sampling period. In a normal state, δd is set to

a small number to prevent the high oscillation of deadlines; α

is set to 1 in our testbed. However, as a specific resource is be-

ing overloaded for consecutive sampling periods, δd increases

multiplicatively to speed up the adaptation of deadlines. In

the presence of a QoS controller, the overloading of a specific

resource happens consecutively when the QoS controller can

not adjust CPU or I/O load any further.

3.2 QoS Management Architecture

Transaction Hander

BM SCCC

buffer_size∆update rate∆

Admission
Control

..

..

..

Dispatch

Abort/Restart

Block
Block Queue

Monitor
Actuator

Estimattor
Buffer size

Manager
Freshnessadmission

rate

Multiple inputs/

Multiple outputs

Feedback Controller

CPU tardiness error

I/O tardiness error

∆cpu_load

∆

Ready Queue

User tranactions

Best effort

Update

Q1

Q0

Q2

hit_ratio

Figure 2. QeDB Architecture.

Figure 2 shows the architecture of QeDB that consists of

the MIMO feedback controller, actuator, performance moni-

tor, admission controller, buffer manager (BM), concurrency

controller (CC), and scheduler (SC).

The figure shows three separate queues in the ready queue.

Temporal data updates are scheduled in Q0 and receives the

highest priority. Q1 handles real-time user transactions. Non-

real-time transactions in Q2 has the lowest priority, and they

are dispatched only if Q0 and Q1 are empty. Transactions in

each queue is scheduled in FCFS manner. As a user trans-

action arrives, it is required to finish by the time equal to the

sum of the current time and (relative) deadline. For concur-

rency control, we apply 2PL (two phase locking) provided by

Berkeley DB underlying QeDB. Transactions can be blocked,

aborted, and restarted due to data conflicts.

In assigning priorities to transactions, transaction timeli-

ness and and data freshness pose conflicting requirements. If

user transactions are given a higher priority than temporal up-

dates, the transaction timeliness can be improved at the cost of

the potential freshness reduction and vice versa [9]. In QeDB,

we give a higher priority to temporal data updates to preserve

the freshness of data. However, the timeliness of user transac-

tions are still guaranteed by the feedback control loop, which

regulates the rate of update transactions and the buffer size.

The performance monitor computes the I/O and CPU tar-

diness, i.e., the difference between the desired I/O (and CPU)

response time and the measured I/O (and CPU) response time

at every sampling period. Based on the errors, the feedback

controller computes the required buffer hit ratio adjustment

(∆hit raio) and CPU load adjustment (∆cpu load). The ac-

tuator estimates the required buffer size adjustment and up-

date rate adjustment based on ∆hit ratio and ∆cpu load.

Finally, the buffer manager and the freshness manager adjusts

the buffer size and update rates of temporal data.

3.2.1 Feedback Control Procedure

Controller

(MIMO)

QeDB

Tardiness
+

−

+

−−−

−

1

1

e (k)

i/o

cpu

e (k)
tardiness (k)

i/o

cpu_load

hit_ratio∆

∆ tardiness (k)
cpu

Figure 3. Tardiness Control Loop.

The goal of the feedback controller shown in Figure 3 is

to support the transaction response time equal to its deadline,

which requires the desired tardiness to be 1. The overall feed-

back control procedure is as follows.

1. At the kth sampling instant, the tardiness errors ei/o(k)
and ecpu(k) are computed respectively for I/O tardiness

and CPU tardiness.

2. Based on ei/o(k) and ecpu(k), the MIMO controller

computes the control signal ∆hit ratio and ∆cpu load.

Unlike a Single Input/Single Output (SISO) controller,

the MIMO controller computes control signals simulta-

neously considering both I/O tardiness and CPU tardi-

ness.

3. The actuator translates ∆hit ratio to ∆buffer size.

QeDB maintains a linear model that correlates the buffer

size to the buffer hit ratio [12]. This linear model is up-

dated at each sampling period since locality of data ac-

cesses changes dynamically at run-time. ∆buffer size

is achieved by changing the buffer size according to

this model. Changing the buffer size also changes CPU

load as will be shown in the next Section. Therefore,

∆cpu load is adjusted after applying a new buffer size.

4. The ∆cpu load is achieved by adjusting the update rates

of cold temporal data. Update transactions have small

impact on the buffer hit ratio since they access only one

data object. For cost-effective temporal data updates, the

access update ratio AUR[i] is computed for each tem-

poral data di; AUR[i] is defined as
Access Frequency[i]
Update Frequency[i] .

If ∆cpu load < 0, the update rates of a cold data ob-

ject, which is accessed infrequently, are adjusted from

p[i] to p[i]new [17]. The adjustment changes CPU load

by (p[i]new − p[i])/p[i]). This update period adjustment

repeats to a subset of cold data until ∆cpu load ≥ 0 or

no more freshness adaptation is possible.

3.3 System Modeling and Controller De-
sign

In this section, we take a systematic approach to designing

the tardiness controller.

The first step in the design of a feedback control loop is

the modeling of the controlled system [15]; QeDB in our

study. Unlike previous work [10][18], which have single-

input, single-output (SISO), the QeDB in this paper has

multiple inputs (hit ratio and cpu load) and multiple out-

puts (tardinessi/o and tardinesscpu). We may choose to

use two separate SISO models for each pair of control in-

put and system output; one SISO model for ∆hit ratio

and tardinessi/o, the other model for ∆cpu load and

tardinesscpu. However, if an input of a system is highly af-

fected by another input, then a MIMO model should be con-

sidered [13] since having two SISO models can not capture

the interaction between different control inputs and system

outputs.

Before the actual system identification [22] of QeDB, we

performed a series of experiments on a testbed to understand

the interaction between multiple control inputs and multiple

system outputs. (The details of the testbed and workloads will

be described in Sections 4 and 5, respectively.) First, Figure

4 shows the results of varying the cache size while the up-

date rate of temporal data is fixed. It shows that changing the

buffer hit ratio via varying cache size also changes the CPU

load, and they are inversely proportional; increasing buffer hit

ratio decreases the CPU load, and vice versa. This interac-

tion is because I/O operations of QeDB involves not only raw

I/O to the flash memory, but also computation such as search-

ing for data pages in a buffer, locking data/index pages, and

finding a least-recently-used page. Therefore, when the buffer

hit ratio is low, the CPU load increases proportionally to find

LRU pages, and allocate a buffer space for new pages from

the secondary storage. In the next experiment, the update rate

of temporal data is varied while the buffer size is fixed. Fig-

ure 5 shows the results. Update transactions are computation-

intensive, and it is expected to change only CPU load. The

result in Figure 5-(b) matches this expectation. While buffer

hit ratio is affected a little bit by varying update rates, the ef-

fect is negligible. However, Figure 5-(c) shows that changing

CPU load by adjusting update rates affects both I/O tardiness

and CPU tardiness; both I/O tardiness and CPU tardiness are

proportional to CPU load. This is because the I/O operations

in QeDB involves lots of computation themselves and the in-

creased CPU load make them preempted more frequently by

high priority update transactions. Moreover, increasing the

update rates of temporal data increases the lock confliction

rate, making I/O operations to wait for the locks. These re-

sults show that a MIMO model is required to capture those

close interactions of multiple inputs and multiple outputs of

QeDB.

In the actual system identification of QeDB, two inputs are
changed simultaneously with relatively prime cycles on the
same testbed. The relatively prime cycles are used to fully
stimulate the system by applying all different combination of

0 50 100 150 200 250
0

2

4

6

8

C
a

c
h

e
 s

iz
e

 (
M

B
)

Time (x 5 seconds)

0 50 100 150 200 250
0

20

40

60

80

100

U
p

d
a

te
 p

e
r

s
e

c
o

n
d

Cache size(MB)

Update per second

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

B
u
ff
e
r

h
it
 r

a
ti
o

Time (x 5 seconds)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

C
P

U
 l
o
a
d

Buffer hit ratio

CPU load

0 50 100 150 200 250
0.5

1

1.5

I/
O

 t
a
rd

in
e
s
s

Time (x 5 seconds)

0 50 100 150 200 250
0.5

1

1.5

C
P

U
 t
a
rd

in
e
s
s

I/O tardiness

CPU tardiness

(a) Cache size vs. update rate (b) Buffer hit ratio vs. CPU load (c)I/O and CPU tardiness

Figure 4. Varying cache size.

0 50 100 150 200 250
0

2

4

6

8

C
a

c
h

e
 s

iz
e

 (
M

B
)

Time (x 5 seconds)

0 50 100 150 200 250
0

20

40

60

80

100

U
p

d
a

te
 p

e
r

s
e

c
o

n
d

Cache size(MB)

Update per second

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
B

u
ff
e
r

h
it
 r

a
ti
o

Time (x 5 seconds)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

C
P

U
 l
o
a
d

Buffer hit ratio

CPU load

0 50 100 150 200 250
0.5

1

1.5

I/
O

 t
a
rd

in
e
s
s

Time (x 5 seconds)

0 50 100 150 200 250
0.5

1

1.5

C
P

U
 t
a
rd

in
e
s
s

I/O tardiness

CPU tardiness

(a) Cache size vs. update rate (b) Buffer hit ratio vs. CPU load (c)I/O and CPU tardiness

Figure 5. Varying update rate.

two inputs. The result, which is not shown due to space limi-
tations, is used for system modeling. The form of linear time
invariant model for QeDB is shown in Equation 9, with pa-
rameters A and B.

»

tardinessi/o(k + 1)
tardinesscpu(k + 1)

–

=

A ·

»

tardinessi/o(k)
tardinesscpu(k)

–

+ B ·

»

hit ratio(k)
cpu load(k)

–

(9)

Because QeDB is modeled as a MIMO system, A and

B are 2x2 matrices. In our study, the model has A =
»

0.275 −0.266
−0.158 0.601

–

, and B =

»

−0.255 1.980
0.120 0.784

–

as its

parameters. All eigenvalues of A are inside the unit circle,

hence, the system is stable [15]. The accuracy metric R2

(= 1 − variance(experimental value - predicted value)

variance(experimental value)
) is 0.844

and 0.866 for I/O and CPU tardiness, respectively. This shows

that the above model is accurate enough since R2 ≥ 0.8 is

considered acceptable [15].

For QeDB, we choose to use a proportional integral (PI)

control function given by,

U(k) = KP · E(k) + KI ·

k−1∑

j=1

E(j), (10)

where KP and KI are controller gains. We used the lin-

ear quadratic regulator (LQR) technique to determine control

gains, which is accepted as a general technique for MIMO

control [15]. The details of our MIMO controller design pro-

cedure can be found in [19].

Finally, the buffer affects the choice of sampling interval

because the buffer hit ratio changes slowly after adjusting its

size. If the sampling interval is too short, controlling buffer

size may not make full effect until the next sampling period,

thus, wasting the control effort. Conversely, if the sampling

interval is too long, the speed of control will be slow. Our

experiments showed that 5 second sampling interval makes a

good trade-off between the two conflicting requirements.

4 Implementation

In this sectoin, we describe the system components used in

the implementation of QeDB, and show some implementation

issues not directly related to QoS control.

4.1 Hardware and Software

The hardware platform used in the testbed is Nokia N810

Internet tablet [6]. The summarized specification of the

testbed is given in Table 1. We chose this platform be-

cause N810 represents typical modern embedded systems that

QeDB is aiming for; it has small main memory space com-

pared to large flash memory space, limiting the the applica-

tion of main memory-based RTDB technologies3. The flash

memory in N810 has 2KB page size and 128KB erase block

size.

The operating system of N810 is Maemo, which is a mod-

ified version of GNU/Linux slimmed down for mobile de-

vices4. The flash memory of N810 can be accessed through

3In N810, the remaining main memory space for user applications is less

than 30MB.
4Maemo is based on GNU/Linux 2.6.21 kernel.

Table 1. H/W specification of the testbed.
CPU 400MHz TI OMAP 2420

Memory 128 MB RAM

Flash storage 256 MB (on-board), 2GB (SD card)

Network IEEE 802.11b/g, Bluetooth 2.0

MTD (Memory Technology Device) [5] and JFFS2 (Journal-

ing Flash File Systems, version 2) [4]; database files in QeDB

are stored in the flash device via this JFFS2 filesystem. MTD

provides a generic interface to access flash devices, which in-

cludes routines for read, write, and erase. JFFS2 is a log-

structured file system designed for use on flash devices in em-

bedded systems. Rather than using a translation layer on flash

devices to emulate a normal hard drive, it places the filesystem

directly on the thin MTD layer. JFFS2 organizes a flash device

as a log which is an continuous medium, and data are always

written to the end of the log. In a flash device old data cannot

be overwritten before erasing, so the modified data must be

written out-of-place. In a background process, JFFS2 collects

these old garbage data.

QeDB is an extension of Berkeley DB, which is a popu-

lar open-source embedded database. Berkeley DB provides

robust storage features as traditional database systems, such

as ACID transactions, recovery, locking, multi-threading for

concurrency, and single-master replication for high availabil-

ity. However, Berkeley DB does not provide the QoS support

in terms of tardiness and freshness, which is the main objec-

tive for the design of QeDB.

4.2 Implementation Issues

We discuss several implementation issues and challenges

for implementing QeDB.

Avoiding Double Buffering QeDB uses file system to store

data. When using file systems with a database, the read

data is double-buffered in both the file system buffer

cache and the DBMS buffer cache. Double buffering

not only wastes memory space, but also make I/O re-

sponse time unpredictable; DBMS have no control over

the filesystem layer buffer cache, since it is controlled

by the operating system. QeDB’s dynamic buffer ad-

justment scheme cannot achieve its goal in the presence

of double-buffer since changing the buffer size at QeDB

only affects the buffer in DBMS layer. Unfortunately,

Berkeley DB for Linux, underlying QeDB, does not sup-

port direct I/O, or bypassing filesystem’s buffer cache.

QeDB solves this problem by making a separate parti-

tion for database files, and disabling buffer cache of that

partition at the file system level. The buffer cache in the

file system was disabled by applying modification to the

JFFS2 code in the Linux kernel.

Dynamic Voltage/Frequency Scaling (DVFS) Modern em-

bedded systems such as Nokia N810 exploit DVFS tech-

nique to save power and prolong its lifetime. With

DVFS, a CPU has several discrete frequency modes.

Nokia N810 has 4 frequency modes and the operating

frequency is adjusted automatically by a kernel space

module based on the current CPU usage; if current CPU

load is more than a threshold, the frequency of the CPU is

switched to the higher frequency mode, and vice versa.

Since both DVFS controller of OS and QoS controller

in QeDB try to control the CPU load, the end result be-

comes unpredictable. Therefore, we currently disable the

DVFS by setting the frequency to the highest one. Hav-

ing multiple performance controller working on the same

resource poses an interesting research question on their

interaction. We reserve this as our future work.

5 Evaluation

sensor data updates

90ms

RT user transactions Non−RT tasks

110ms

Figure 6. Tasks in the experiment.

For evaluation, a firefighting scenario from [3] is adapted,

and simulated on our testbed. In this scenario, a PDA carried

by a firefighter collects sensor data via wireless communica-

tion, and a periodic real-time task running on the PDA checks

the status of the burning building such as the possibility of

collapse, explosion, the existence of safe retreat path, etc.

A PDA carried by a firefighter is simulated by a N810 In-

ternet tablet and a stream of sensor data from a building is

simulated by a separate 3.0 GHz Linux desktop. Two devices

are connected via wireless Ethernet. The desktop simulates

1024 set of sensors located in the building by continuously

sending update reports to the N810. The report period of each

set of sensors is uniformly distributed in [1 sec, 10 sec]. In the

N810, each update report from the desktop initiates an update

transaction to the underlying QeDB. Each set of sensors takes

1KB in storage space, totaling 1MB for temporal database in

the N810. The N810 has another 7MB data for non-temporal

data such as maps of the building, and engineering data to an-

alyze the status of the building5. On every 200ms period, a

new QeDB user transaction is instantiated by a local timer in

the N810. The user transaction has a similar structure to Pro-

gram 1 and it simulates the operation of checking the status of

the building. The profiled minimum response time, or the ex-

ecution time, is 31±0.52ms for EXECI/O, and 36±0.3ms

for EXECCPU with 99% confidence.

The deadline of the user transaction is set to 110ms and

the remaining 90ms is reserved for non-real-time tasks, which

are still important for proper operation of the system. For ex-

ample, our experiment shows that the keypad and GUI com-

ponents are not working smoothly if the user transaction takes

5These are raw data sizes. The total storage and memory overhead to keep

this raw data in the database system is more than the twice of the raw data.

90−10 70−30 50−50
0

0.5

1

1.5

2

2.5

3

3.5

4

T
a
rd

in
e
s
s

Open

CPUonly

QeDB

90−10 70−30 50−50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
o
ta

l
fr

e
s
h
n
e
s
s

Open

CPUonly

QeDB

(a) Tardiness (b) Total freshness

90−10 70−30 50−50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
rc

e
iv

e
d
 f
re

s
h
n
e
s
s

Open

CPUonly

QeDB

90−10 70−30 50−50
0

1

2

3

4

5

6

B
u

ff
e

r
s
iz

e
(M

B
)

Open

CPUonly

QeDB

(c) Perceived freshness (d) Buffer size

Figure 7. Average performance with X-Y access patterns.

Table 2. Tested approaches.
Open Pure Berkeley DB

CPUonly SISO control of update rates

QeDB MIMO control

longer than 110ms. This is similar to having aperiodic servers

in real-time scheduling to handle aperiodic tasks. Figure 6

shows the tasks in one period; this period repeats in the exper-

iment. In the experiment, we do not set a specific requirement

on the freshness of the temporal data to observe how much

trade-off is made to make real-time transactions timely.

For performance comparisons, we consider three ap-

proaches shown in Table 2. Open is the basic Berkeley DB

without any special performance control facility. However,

the FCFS scheduling with 3 differentiated queues as in Sec-

tion 3.2 are still used to process real-time transactions faster

than the others. Thus, Open represents a state-of-art database

system. In contrast, CPUonly represents a RTDB having a

QoS management scheme [17], which is not I/O-aware. In

CPUonly, as the tardiness of transactions deviates from the de-

sired tardiness, only the CPU workload is adjusted by chang-

ing update rates of temporal data. I/O workload is not dy-

namically controlled. This scheme is originally designed for

main-memory RTDBs that have no or negligible I/O work-

load. This approach uses a SISO model and controller; the

CPU utilization is the control input and the transaction tardi-

ness is the system output. A PI controller is used for CPUonly.

Finally, QeDB is our approach, which controls both I/O and

CPU tardiness using a MIMO controller.

5.1 Average performance

Computing systems show different behavior for different

workloads. In this experiment, workloads are varied by ap-

plying different data access patterns. The effect of data con-

tention is tested using x−y data access scheme. In x−y access

scheme, x% of data accesses are directed to y% of the data in

the database. For instance, with 90-10 access pattern, 90% of

data accesses are directed to 10% of data in the database, thus,

incurring data contention on 10% of entire data. We tested the

robustness of our approach by applying three different x − y

access patterns.; 90-10, 70-30, and 50-50 data access patterns.

The average performance for each approach with each data

access pattern is shown in Figure 7; the confidence interval

is 99%. Figure 7-(a) shows that both CPUonly and QeDB

achieve the tardiness goal in all data access patterns. In con-

trast, Open does not achieve the goal in any data access pat-

tern. Actually, the tardiness of Open could not be measured in

70-30 and 50-50 data access patterns because the system did

not respond. This is the situation, in which real-time tasks take

all resources, preventing low-priority tasks from proceeding.

Even though both CPUonly and QeDB achieve the tardi-

ness goal, the trade-offs, which they make, are very differ-

ent. Figure 7-(b) shows the total tardiness, which is the ra-

tio of fresh data to the entire data in the database. CPUonly

shows lower data freshness compared to QeDB, and this is

even more evident when we consider the perceived freshness

of data as shown in Figure 7-(c). In 90-10 access pattern,

the total size of locality is small, and transactions are CPU-

bounded since most data access requests can be handled in the

buffer with high buffer hit ratio. However, as the data access

spreads widely as in 50-50 access pattern, the size of local-

ity becomes larger, and the transactions become I/O-bounded

since the small buffer of CPUonly incurs low hit ratio. In

case of CPUonly, the tardiness is controlled only by adjusting

the freshness of temporal data, regardless of which resource

is getting overloaded. Therefore, CPUonly have to lower the

freshness of data excessively, which can be problematic if an

application requires high data freshness. For example, the to-

tal freshness of CPUonly drops from 0.73±0.02 to 0.37±0.1
when the access pattern changes from 90-10 to 50-50, which

is more than 50% degradation of the data freshness. In con-

trast, QeDB achieves more stable data freshness in all data

access patterns. As the size of locality is getting larger, QeDB

increases the size of buffer as in Figure 7-(d), while still main-

taining high data freshness. For instance, the buffer size in-

crease about 64% and the total freshness drops 18% when

the access pattern changes from 90-10 to 50-50. If we con-

sider the perceived freshness of data, the difference between

CPUonly and QeDB is even higher. The perceived freshness

drops only 14% in QeDB while it drops 40% in CPUonly.

5.2 Transient Performance

0 20 40 60 80 100 120 140 160
0.6

0.8

1

1.2

1.4

Time (x5 seconds)

I/O tardiness

CPU tardiness

Total tardiness

(a) Tardiness

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

C
a

c
h

e
 s

iz
e

 (
M

B
)

Time (x5 seconds)

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

T
o

ta
l
fr

e
s
h

n
e

s
s

Cache size(MB)

Total freshness

(b) Buffer size and freshness

Figure 8. Transient performance of QeDB.

The average performance is not enough to show the per-

formance of dynamic systems. Transient performance such

as settling time should be small enough to satisfy the require-

ments of applications. In this experiment, the workload in-

creases by introducing a disturbance. For example, consider

a situation where peer firefighers opportunistically exchange

their temporal data when they are close enough to communi-

cate with each other. This opportunistic data exchange incurs

both additional I/O and CPU load to process it. In the exper-

iment, the disturbance is a periodic transaction that lasts for

50 sampling periods. The periodic transaction retrieves 1KB

data page with 10ms interval.

Figure 8-(a) shows the tardiness of real-time transactions.

The corresponding buffer hit ratio and data freshness at the

same time are shown in Figure 8-(b). The disturbance starts

at the 55th sampling period and ends at the 105th sampling

period. In Figure 8-(a), we can see that the tardiness increases

suddenly at the 55th sampling period. However, the tardiness

stabilizes within 3 sampling periods. When the disturbance

disappears at the 105th sampling period, it takes 8 sampling

periods to stabilize. These long settling times are the result of

controller tuning in the controller design phase in Section 3.3.

We can reduce the settling times by choosing control parame-

ters for more aggressive control. However, aggressive control

results in the higher overshoots and fluctuations in controller

inputs (the cache size and update rates). Changing the cache

size too frequently has a problem in our system since it causes

more read/write operations to and from the flash memory. In

particular, frequent write operations can incur significant I/O

overhead. For details on controller tuning, users are referred

to [19]

6 Related Works

Most RTDB work is based on simulations. Only a few

works [9][17] have actually been implemented and evaluated

in real database systems. However, most of them are not

available publically, or outdated. QeDB has been developed

to address this problem. Moreover, all previous implemen-

tations take main memory-based RTDB approaches, limit-

ing their application to a broader range of systems, resource-

constrained systems in particular. In contrast, QeDB does not

require that all data reside in main memory.

In embedded systems domain, several DBMS implemen-

tations [20][21] are available. Most of the them are flash

memory-based DBMSs, and exploit the peculiar characteris-

tics of flash memory to optimize its resource consumption.

Some DBMSs [26][27] target extremely resource-constrained

embedded systems such as sensor platforms. However, these

DBMSs provide only basic features for accessing data such

as indexing. Some features of DBMSs such as concurrency

control and guaranteeing logical consistency are usually not

supported in these DBMSs. Therefore, their performance op-

timization is at the flash device level. Moreover, even though

they provide efficient mechanisms on accessing data, their ap-

proaches are basically best-effort; they do not assure any guar-

antees on its performance. Unlike these DBMSs, QeDB guar-

antees the QoS goals set by applications via feedback control

even in the presence of dynamically changing workload.

Feedback control have been actively applied to manage the

performance of various systems such as a web server [23],

real-time middleware [24], caching service [25], and email

server [30]. However, these approaches are not directly appli-

cable to RTDBs, because they do not consider RTDB-specific

issues such as data freshness. Moreover, these approaches

consider only single resource, e.g., contention in CPU, for

QoS management. Unlike these approaches, QeDB manages

multiple resources, which have close interaction, via MIMO

feedback control.

7 Conclusions and Future Work

In this paper, we proposed a novel feedback control ar-

chitecture to support the desired tardiness of transactions in

RTEDBs. Unlike previous feedback control of RTDB perfor-

mance, our approach controls multiple resources simultane-

ously, which have close interaction, to provide more efficient

and robust control behavior. We showed the feasibility of the

proposed feedback control architecture by implementing and

evaluating it on a modern embedded system. Our evaluation

shows that the simultaneous control of I/O and CPU resource

can make a better negotiation between the timeliness of trans-

actions and the freshness of data by providing proper amount

of resources in a robust and controlled manner. In the future,

we plan to enhance the feedback control scheme to include

other QoS metrics such as power, which is critical in mobile

embedded systems.

References

[1] CarTALK2000 Project, http://www.cartalk2000.net/, 2007.

[2] Communication and Networking Technologies for Public

Safety,. National Institute of Standards and Technology,

http://w3.antd.nist.gov/comm net ps.shtml, 2008.

[3] Fire Information and Rescue Equipment (FIRE) project,

http://fire.me.berkeley.edu/, 2008.

[4] JFFS2: The Journalling Flash File System, version 2,

http://sources.redhat.com/jffs2/, 2008.

[5] Memory Technology Device Subsystem for Linux, www.linux-

mtd.infradead.org/, 2008.

[6] Nokia N-Series, http://www.nseries.com/, 2008.

[7] Oracle Berkeley DB, http://www.oracle.com, 2008.

[8] SQLite, http://www.sqlite.org, 2008.

[9] B. Adelberg. STRIP: A Soft Real-Time Main Memory Database

for Open Systems. PhD thesis, Stanford University, 1997.

[10] M. Amirijoo, J. Hansson, and S. H. Son. Specification and

management of QoS in real-time databases supporting imprecise

computations. IEEE Transactions on Computers, 55(3):304–319,

March 2006.

[11] L. Bertini, J. C. B. Leite, and D. Mosse. Statistical qos guar-

antee and energy-efficiency in web server clusters. In ECRTS

’07: Proceedings of the 19th Euromicro Conference on Real-

Time Systems, pages 83–92, Washington, DC, USA, 2007. IEEE

Computer Society.

[12] K. P. Brown, M. J. Carey, and M. Livny. Goal-oriented buffer

management revisited. SIGMOD Rec., 25(2):353–364, 1996.

[13] Y. Diao, N. Gandhi, and J. Hellerstein. Using MIMO feedback

control to enforce policies for interrelated metrics with applica-

tion to the Apache web server. In Network Operations and Man-

agement, April, 2002.

[14] W. Enkelmann. Fleetnet - applications for inter-vehicle com-

munication. In Intelligent Vehicles Symposium, 2003. Proceed-

ings. IEEE, 2003.

[15] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feed-

back Control of Computing Systems. Wiley IEEE press, 2004.

[16] X. Jiang, N. Y. Chen, J. I. Hong, K. Wang, L. Takayama, and

J. A. L. Siren: Context-aware computing for firefighting. In

In Proceedings of Second International Conference on Pervasive

Computing, pages 87–105, 2004.

[17] K.-D. Kang, J. Oh, and S. H. Son. Chronos: Feedback control

of a real database system performance. In RTSS, 2007.

[18] K.-D. Kang, S. H. Son, and J. A. Stankovic. Manag-

ing deadline miss ratio and sensor data freshness in real-time

databases. IEEE Transacctions on Knowledge and Data Engi-

neering, 16(10):1200–1216, October 2004.

[19] W. Kang, S. H. Son, J. A. Stankovic, and M. Amirijoo. I/O-

aware deadline miss ratio management in real-time embedded

databases. In The 28th IEEE Real-Time Systems Symposium

(RTSS), Dec, 2007.

[20] G.-J. Kim, S.-C. Baek, H.-S. Lee, H.-D. Lee, and M. J. Joe.

LGeDBMS: A small DBMS for Embedded System with Flash

Memory. In Proceedings of the 32nd International Conference

on Very Large Data Bases (VLDB), 2006.

[21] S.-W. Lee and B. Moon. Design of flash-based DBMS: an in-

page logging approach. In SIGMOD ’07: Proceedings of the

2007 ACM SIGMOD international conference on Management

of data, 2007.

[22] L. Ljung. Systems Identification:Theory for the User 2nd edi-

tion. Prentice Hall PTR, 1999.

[23] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feed-

back control approach for guaranteeing relative delays in web

servers. In RTAS ’01: Proceedings of the Seventh Real-Time

Technology and Applications Symposium (RTAS ’01), 2001.

[24] C. Lu, X. Wang, and C. Gill. Feedback control real-time

scheduling in orb middleware. In RTAS ’03: Proceedings of the

The 9th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium, page 37, Washington, DC, USA, 2003. IEEE

Computer Society.

[25] Y. Lu, T. F. Abdelzaher, and A. Saxena. Design, implemen-

tation, and evaluation of differentiated caching services. IEEE

Trans. Parallel Distrib. Syst., 15(5):440–452, 2004.

[26] G. Mathur, P. Desnoyers, D. Ganesan, and P. J. Shenoy. Cap-

sule: an energy-optimized object storage system for memory-

constrained sensor devices. In SenSys, 2006.

[27] S. Nath and A. Kansal. FlashDB: Dynamic self-tuning database

for NAND flash. In The International Conference on Information

Processing in Sensor Networks (IPSN), 2007.

[28] A. Nori. Mobile and embedded databases. In SIGMOD ’07:

Proceedings of the 2007 ACM SIGMOD international conference

on Management of data, pages 1175–1177. ACM, 2007.

[29] D. Nystrom, A.Tesanovic, C.Norstrom, J. Hansson, and N.-E.

Bankestad. Data management issue in vehicle control systems: a

case study. In ECRTS’02, 2002.

[30] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and

J. Bigus. Using control theory to achieve service level objectives

in performance management. Real-Time Syst., 23(1-2):127–141,

2002.

[31] K. Ramamritham, S. H. Son, and L. C. Dipippo. Real-time

databases and data services. Real-Time Systems, 28(2-3):179–

215, 2004.

