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Abstract—Various sensing systems have been exploited to
monitor in-person interactions, one of the most important in-
dicators of mental health. However, existing solutions either
require deploying in-situ infrastructure or fail to provide detailed
information about a person’s involvement during interactions.

In this paper, we use smartphones and on-body sensors to
monitor in-person interactions without relying on any in-situ
infrastructure. By using state-of-art smartphones and on-body
sensors, we implement a multi-modal system that collects a
battery of features to better monitor in-person interactions. In
addition, unlike existing work that monitors interactions only
based on data collected from one person, we emphasize that
in-person interactions intrinsically involve multiple participants,
and thus we aggregate information from nearby people to
identify more interaction details. Evaluation shows our solution
accurately detects various in-person interactions and provides
insights absent in existing systems.

I. INTRODUCTION

According to the Department of Health and Human Ser-
vices [1], the population of 65 and over in the US will increase
from 40 million to 55 million between 2010 and 2020, a more
than 30% increase during the decade. However, 15%-20%
of senior people have significant depressive symptoms [2].
Many studies show that the lack of in-person interactions
plays an important role in the initialization and development of
depression [3] and is one of the most important indicators of
physical and mental health in aging patients [4]. Therefore, in-
person interaction monitoring is of great importance, because
it enables psychiatric clinicians and geriatric professionals to
perform more accurate diagnosis and treatment of psycholog-
ical problems for elderly people.

Plenty of existing work targets people’s daily activities,
but they are not well poised to detect in-person interactions,
because: 1) most activity detection methods such as [5] use
very limited types of sensors, usually only accelerometers,
and lack the multitude of sensing modalities needed to detect
rich interactions between people; 2) existing solutions such
as [6]–[9] detect human interactions solely based on data
collected from one person, and ignore the involvement of
multiple participants, which is the intrinsic nature of in-person
interactions.

These problems limit existing systems from extracting in-
person interaction details such as the involvement of a person
in a conversation. Yet this detailed information is critical
for psychiatrists or caregivers to monitor and assess people’s
mental health, as indicated in gerontological studies [3], [10].

To overcome these limitations, in this paper, we propose
a multi-modal in-person interaction monitoring system using

smartphones and on-body sensors. Our system first detects
seven kinds of primitives from all participants interacting
with each other: activities of subjects, proximity information,
presence of speech, speech volume analysis, GPS coordinates,
phone call records, and calendar events. By analyzing these
primitives, our system detects details about interactions. Our
system suits best for facilities such as nursing homes where
it can be deployed to all people and primitives from all
participants of an interaction can be collected. It can also be
used when people interacting with the subject do not have
our system, because primitives collected from the subject such
as activities, speech, and GPS are already sufficient to detect
many interactions such as dining out though with less details.

Moreover, unlike some existing work [4], [11] requiring
deployment of environmental sensors, our system only uses
smartphones and optionally on-body sensors to detect in-
person interactions. This significantly improves the mobility
and thus practicality of our system, since many interactions of
interest such as dining with others happen where environmental
sensors are unavailable.

II. RELATED WORK

Existing work on in-person interaction monitoring can be
divided into two categories according to whether ambient
sensors are used or not.

In the first category, only on-body sensors, such as GPS, ac-
celerometers, microphone, and camera, are used. CenceMe [8],
[9] developed by Emiliano et al. automatically detects activities
of individuals and shares the sensing results through social
networks such as Facebook. In their work, various types of data
such as location, acceleration, and audio signals are collected
by sensors on mobile phones. SoundSense [7] developed by
Hong Lu et al. distinguishes speech from music and ambient
sound. Besides microphones, cameras are also used to detect
social interactions. Pierluigi at al. [12] build a badge which
includes a triaxial accelerometer and a JPEG camera. The
camera is used to detect the presence of other people, which
is an indicator of in-person interactions.

Solutions in the second category use ambient sensors to
understand interactions of multiple people. Datong et al. [4]
place four video cameras and audio collectors in public
areas including the dining room, living room and hallway.
By analyzing collected audio/video signals, their work can
detect high-level social interactions such as greeting, standing
conversation, and walking together. Diane et al. [11] detect
interactions in a smart home which is equipped with motion
sensors distributed about every meter throughout the space.
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Fig. 2: System platform: (a) hardware; (b) mobile app user
interface.

Solutions using on-body sensors, either use very limited
types of sensors such as SoundSense, or fail to collect and
utilize data from multiple participants such as CenceMe. The
main problem with the second category of solutions is that
they require environmental sensors deployed, which severely
limits the applicability of the solutions. In addition, privacy is
a major concern for solutions using cameras.

Considering the prevalence of personal sensing devices,
Paul et al. [13] discussed possibilities of socially aware com-
puting, in which every device not only performs its own task,
but also collaborates with each other to monitor and analyze
social interactions. Brett et al. [6] equipped each subject with
a GPS, and then determined how they spent time at the same
location together. But their work can only provide general
information on proximity of people.

III. MULTI-MODAL IN-PERSON INTERACTION
MONITORING SYSTEM

To overcome the shortcomings of existing solutions, we
employ a multi-modal system to detect in-person interactions
with detailed involvement information. The framework to
detect in-person interactions is shown in Fig. 1. The techniques
employed in the framework is detailed below.

A. Platform

Inertial sensors (TEMPO nodes [14]) and a smartphone
(HTC One V) are used in our social interaction detection
system. The TEMPO nodes are attached to the chest and thigh
to monitor the motion and posture of the body, collecting
acceleration data at a sampling rate of 120Hz — sufficient
to capture the characteristic response of human activities.
The HTC One V phone records audio signals around the
subject, detects the proximity of other people, and collects
GPS coordinates, calendar events, and phone call records. The

TABLE I: The average value and standard deviation of θ and
ây for different postures.

Posture mean(θ) std(θ) mean(ây) std(ây)
Standing 7.28◦ 2.81 1.07g 0.01
Sitting 71.77◦ 3.64 1.01g 0.01
Lying 13.58◦ 1.78 −0.07g 0.10

phone also functions as a data aggregator for TEMPO nodes.
The hardware platform is shown in Fig. 2a. The mobile app
user interface is shown in Fig. 2b.

B. Primitives

From data collected our system calculates seven kinds of
primitives to detect in-person interactions. These primitives
are: 1) activities of subjects, including static postures (standing,
sitting, and lying) and dynamic movements; 2) the proximity
information of nearby BSNs; 3) the presence of speech;
4) speech volume analysis during clear speech; 5) location
information from GPS coordinates; 6) phone call records; 7)
calendar events.

1) Activity: In activity detection, first we determine
whether a person is dynamically moving or statically posturing
(dynamic vs. static) according to the variation of accelerations.
If the person is staticcaly posturing, we use accelerations from
TEMPO nodes to determine specific static postures: standing,
sitting, or lying.

To distinguish specific static postures, we calculate the
angle between the trunk and thigh, θ, using Equation (1), where
â and a are the acceleration readings from chest and thigh,
respectively.

θ =
180

π
arccos(

âxax + âyay + âzaz√
â2x + â2y + â2z ·

√
a2x + a2y + a2z

) (1)

Table I, which is obtained from three subjects performing
static postures multiple times, shows the value of θ and ây
(gravitational vector at chest) for different postures. Then we
can distinguish standing (θ < 45◦, ây > 0.5g), sitting (θ >
45◦, ây > 0.5g), and lying (θ < 45◦, ây < 0.5g).

To make our system more flexible, when TEMPO nodes are
not present, our system automatically uses the accelerometer
on the smartphone to distinguish dynamic vs. static. The
system is easier to wear and deploy by excluding TEMPO
nodes, but it also makes activity detection results unreliable
since people do not always keep their phones at the same
position. In addition, without TEMPO nodes our system does
not distinguish specific static postures (standing, sitting, and
lying), which are critical to detect specific kinds of interactions,
e.g. it is an important feature of meetings that multiple people
sit near to each other.

2) Proximity: Most radio devices provide Received Signal
Strength Indicator (RSSI), which can be used to adequately
estimate the distance between nodes when they are within
several meters of each other , hence we use RSSI to detect
proximity. In our system, we use the Bluetooth radio on the



Fig. 1: The framework to detect social interactions.

TABLE II: Pre-measured RSSIref and n for typical indoor
and outdoor environments.

Environment mean(RSSIref ) std(RSSIref ) n
Indoor −61.56 3.08 2.51
Outdoor −83.89 3.46 1.35

smartphone to detect the presence and estimate the distance of
other BSNs in the vicinity.

The relation between distance and RSSI is described in
Equation (2) [15], in which d is the transmitter-receiver
distance, n is the attenuation constant, Xσ is a zero-mean
Gaussian with standard deviation σ (multipath effects), and
RSSIref is the RSSI value at reference distance dref .

RSSI = RSSIref − 10nlog10

(
d

dref

)
+Xσ (2)

Usually n and σ are obtained through curve fitting of
empirical data, but commonly we can assume Xσ to be 0 and
distance can be obtained via Equation (3), in which RSSIref
is measured at dref = 1m.

d = 10
RSSIref−RSSI

10n (3)

According to Equation (3), we need to do measurements to
determine RSSIref and n to extract exact distance from RSSI.
However, since we only need rough estimation of proximity
when detecting in-person interactions, using pre-measured
RSSIref and n are sufficient. Table II shows RSSIref and n
we measured for typical indoor and outdoor environments for
up to 3 meters.

By extracting proximity information from Bluetooth radio,
our system not only discovers nearby BSNs, but also roughly
estimates their distance to the subject. Distance estimation
is important because to monitor an interaction, we need to
determine whether a BSN is a participant or not. In our system,

we consider BSNs within 3 meters potential participants of an
interaction.

3) Speech Detection: In our system, we classify audio
signals recorded by a smartphone microphone into three cat-
egories: clear speech, speech in noise, and other sounds. The
classification is based on audio features mentioned in [16].

We extract eight features divided to 3 groups from recorded
audio signals. They are:

• Amplitude modulation features: width, m1, m2, m3.
width characterizes the modulation depth in the sig-
nal. m1, m2, m3 are the modulation depth for the
modulation spectra of the signal envelope in three
modulation frequency ranges: 0-4Hz, 4-16Hz, and 16-
64Hz.

• Spectral profile features: CGAV (spectral center of
gravity), CGFS (fluctuations of the spectral center
of gravity). CGAV and CGFS describe static and
dynamic spectral profile, respectively.

• Harmonicity features: tonality and pitchvar.
tonality is the ratio of harmonic (pitch is present)
to inharmonic (pitch is absent) parts in the sound.
pitchvar is the variance of pitch.

In our system, all features above are extracted on the
smartphone in real-time every second. Using these features and
bagged tree classifier, our system can detect 93.23% of clear
speech and 85.85% of speech in noise. By accurately detecting
both clear speech and speech in noise, our system provides a
much more comprehensive picture of verbal communication
comparing to existing work such as CenceMe [8], [9], which
can only detect clear speech.

4) Speech Volume Analysis: For clear speech, we perform
volume analysis to determine who is speaking. When one
person is speaking, all mobile phones on the subject and nearby
persons record the speech. By comparing their volume, we can
figure out who is speaking, because the volume from the person
speaking is larger than that on all other persons. However, this
may not be true when there are noises around, therefore sound



Fig. 3: Conversation volume analysis when three people are
talking with each other.

classification mentioned in the previous section is necessary
to make sure that volume analysis is only performed for clear
speech.

Fig. 3 illustrates the scenario when three people are talking
with each other. When A speaks, phones of A, B, and C all
record the voice signal. Since the volume recorded by A is
larger than that recorded by B and C, we can detect that A is
speaking.

5) GPS, Call Records, Calendar: The GPS data collected
from mobile phones is very effective to detect some kinds of
social interactions such as dining out, going to sport events
or movies. Phone call records contain information such as
the time, duration, caller (for incoming calls) or callee (for
outgoing calls), and thus are used in our system to monitor
the subject’s interactions with others over their smartphones.
A calendar entry consists of the time, location, and name of
an event.

C. In-Person Interaction Detection

Each primitive discussed in the previous section provides
basic components to analyze in-person interactions. However,
one single primitive can hardly give enough details. For
example, through GPS the subject can be located in an office
building, but it is hard to know if the person is involved in
any kind of in-person interactions such as talking with others.

Therefore, we adopt a multi-modal approach to detail in-
person interactions: in our system, every in-person interaction
is semantically defined using the vocabulary of primitives.
Three in-person interactions are listed below to demonstrate
how they are defined using a combination of primitives:

• Meeting: speech detection (clear speech) + proximity
(multiple people are nearby) + activity (sitting posture)
+ volume analysis (how many times and how long the
subject speaks).

• Dining out: GPS (in a restaurant) + proximity (there
are people nearby) + speech detection (speech in
noise)

• Exercise: activity (dynamic) + GPS (in a gym) +
proximity (there are people nearby)

Dynamic Static
Dynamic 91.19% 8.81%
Static 2.53% 97.47%

TABLE III: Confusion matrix for detecting static postures and
dynamic movements using phone accelerometers.

Recall Precision
Lying 95.92% 100%
Standing 96.81% 98.89%
Sitting 96.71% 99.69%
Dynamic 100% 87.19%

TABLE IV: Results of detecting dynamic movements and
specific static postures including standing, sitting, and lying
using TEMPO nodes.

These examples show how multi-modal sensing helps ex-
tract details of in-person interactions. For example, instead of
just detecting the “meeting” event, our system also evaluates
the involvement of the subject into the meeting by using
volume analysis to detect times and length the subject spoke.
Similarly, by using the primitive of proximity, our system does
not only detect “dining out” or “exercise”, but also detects if
the subject is doing these activities with others.

IV. EVALUATION

We perform two types of tests to evaluate our system:
component tests and integration tests. Component tests are
used to verify primitives, while integration tests are used to
evaluate the effectiveness of the whole system to detect in-
person interactions.

A. Component Test

1) Activity Detection: Our system detects activities in two
levels of granularity: use the accelerometer on the smartphone
to distinguish dynamic and static activities, or when TEMPO
nodes are used, we detect specific postures including standing,
sitting, and lying. To evaluate the performance of our activity
detection method, each of four subjects wear our system and
performs various daily activities for 10 to 15 minutes. We use
a camera to capture video of the subjects as the ground truth.

Fig. 4: Activity detection results using TEMPO nodes.



d (m) mean(dm) (m) std(dm) (m)

Indoor
1 1.06 0.14
2 1.93 0.19
3 2.51 0.29

Outdoor
1 1.05 0.22
2 2.15 0.37
3 2.73 0.55

TABLE V: Distance estimated using RSSI: d is real distance,
dm is measured distance.

Tab. III shows the confusion matrix of using the accelerom-
eter on a smartphone to distinguish static postures from dy-
namic movements. During these experiments, the smartphone
was put into a trousers pocket, where people usually keep their
phones, and the accuracy is higher than 90%. However, when
people make calls or hold their phones in the hand, the phone
accelerometer can no longer be used to detect activities.

Therefore, our system also utilizes on-body sensors. Using
TEMPO nodes as described in Sec. III-A, our system correctly
detects more than 95% of various static postures and dynamic
activities as shown in Tab. IV. Most of errors happen when
subjects move their legs while standing, sitting, or lying. In
this case, our system detects dynamic activities instead of
static postures, and hence the precision for the dynamic case
in Tab. IV is relatively lower than others. Figure 4 shows
the activity detection results using two TEMPO nodes as the
subject sits, walks, lies down, walks, sits, stands, and then sits
again. It also shows that the majority of misclassification is
caused by regarding static postures as dynamic activities.

2) Proximity Information: Proximity information of other
BSNs is retrieved through Bluetooth discovery service. Each
smartphone tries to discover all nearby neighbors every 5
seconds. The process provides two levels of proximity in-
formation: 1) it detects the presence of a neighbor; 2) using
the RSSI values collected, our system can approximate the
distance between a neighbor and the subject.

To test the accuracy of estimating distance using RSSI, two
subjects stand 1m, 2m, and 3m away from each other in both
indoor (office and house) and outdoor environments. Tab. V
shows the results of estimating distance according to Equa-
tion (3). Though the channel condition changes constantly,
the average of measured distance dm veritably corresponds
to real distance d. The variance of dm caused by channel
condition changes makes it hard to estimate d accurately when
two BSNs are only in the vicinity for a short period of time.
However, since effective in-person interactions like meetings
usually last more than one minute, our system is still able to
extract proximity information reliably.

3) Speech Detection: To evaluate the our speech detection
method, 6 subjects recorded 100 minutes of audio data to
train the classifiers: 50 minutes of clear speech, 20 minutes
of speech in noise (the ambient noise is from street and
supermarket), and 30 minutes of ambient noise from a walking
street and a supermarket.

Then seven of the eight features described in Sec. III-B3
are automatically selected to achieve the best performance for
each classifier. The features selected are: width, m1, m2, m3,
CGAV , CGFS, and tonality. The classifiers used include
Naive Bayes, Discriminant, Boosted Tree, and Bagged Tree.

Fig. 5: Directional turn-takes and length of speech during a
meeting of 3 subjects A, B, and C. Numbers in parentheses
are the ground truth obtained from manually labeled data.

Tab. VI shows the classification results. Among all classi-
fiers, Discriminant is the easiest to implement and can achieve
around 88% overall accuracy. Bagged Tree achieves best
results in terms of sensitivity (recall), precision, and overall
accuracy of 92.37%. Speech in noise is most difficult to
correctly identify, because it is usually misclassified as clear
speech when noise level is too low, or as noise when speech
volume is too low.

4) Volume Analysis: How often and how long one speaks
indicate the involvement during interactions with others. How-
ever, existing work fails to provide this information because it
is difficult to identify the speaker only using the microphone
on one single BSN. By sending volume recorded by each BSN
to the back end server and detecting clear speech, our system
is able to detect who is speaking.

Fig. 5 shows the directional turn-takes of conversations
between 3 subjects A, B, C, and the speech time of each
subject. During the experiment, three subjects talk with each
for 13 minutes. The conversation is recorded and manually
labeled as ground truth. Our results show that A, B, and C
each speak for 377s, 284s, and 124s, respectively, which are
very close to the ground truth of 351s, 256s, and 150s. Also
there are 55 times (against the ground truth of 45 times) that C
starts talking after A. These information provides details about
the involvement during a conversations, and thus indicates the
quality of the interaction.

Most errors are caused by two reasons: 1) there are rare
times two or more subjects speak at the same time, and in this
case, relative volume cannot correctly identify the speaker; 2)
ambient noise can also change relative volume levels, and thus
invalidates the results. Therefore, as described in Sec. III-B4,
we only analyze the volume data of clear speech.

B. Integration Test

After evaluating each primitive, this section demonstrates
how the multi-modal system provides more details of in-person
interactions. Three typical interactions are studied: meeting,
dining out, and exercising at a gym. More details about these
activities can be detected by using different primitives:

• Meeting with colleagues: GPS (office building) +
proximity (BSNs discovered) + activity (sitting) +



Classifier Accuracy (%) Speech Speech in Noise Noise
Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%)

Naive Bayes 88.08 92.05 95.13 73.08 67.71 89.78 88.73
Discriminant 88.98 93.13 91.73 73.96 72.27 91.14 94.93
Boosted Tree 87.27 87.55 94.85 78.84 58.18 90.75 92.64
Bagged Tree 92.37 93.23 95.74 85.85 78.08 94.62 95.62

TABLE VI: Classification resutls for the four classifiers. Simple classifiers such Naive Bayes and Discriminant achieve about
88% accuracy, which can be improved to more than 92% using the more complicated Bagged Tree classifier.

Activity Recall (%) Precision (%)
Meeting with colleagues 92.32 94.31
Meeting with and talking to colleagues 85.64 88.14
Dining out 100 100
Dining out with friends 100 100
Dinning out and talking with friends 82.91 75.41
Exercising in a gym 100 100
Exercising in a gym with friends 88.62 100

TABLE VII: Results of using multi-modal sensing to detect
more details about interactions.

speech detection (clear speech)
• Meeting with and speaking to colleagues: GPS (office

building) + proximity (BSNs discovered) + activity
(sitting) + speech detection (clear speech) + volume
analysis (the subject is speaking)

• Dining out: GPS (restaurant)
• Dining out with friends: GPS (restaurant) + proximity

(friends’ BSNs discovered)
• Dining out and talking with friends: GPS (restaurant)

+ proximity (friends’ BSNs discovered) + speech
detection (speech in noise)

• Exercising in a gym: GPS (gym)
• Exercising in a gym with friends: GPS (gym) +

proximity (friends’ BSNs discovered)

Table VII shows the experiment results of integration tests.
We collect data on two people meeting and three people
meeting for about half an hour. Four people dine out 3 times
to collect dining data. Exercising data is collected when two
people played table tennis. Though the accuracy of interaction
detection becomes lower with requesting more details accord-
ing to Table VII, our system still achieves accuracy of more
than 80%.

V. CONCLUSIONS

In this paper, we propose a multi-modal way to detect in-
person interactions using smartphone and on-body sensors.
This multi-modal way enables our system to extract more
details about in-person interactions. The component tests and
integration tests demonstrate the practicality and accuracy of
our system.

In the current system, in-person interactions are defined
semantically by the combination of primitives. In the future, by
combing the calendar events and other primitives, our system
can be improved to automatically discover patterns of new
kinds of in-person interactions.
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