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ABSTRACT
Falls are dangerous for the aged population as they result in
serious detrimental consequences. Therefore, many fall de-
tection methods have been proposed. Most of these methods
characterize falls by large accelerations and fast body orien-
tation changes. However, certain activities like sitting down
quickly, vigorous gaits, and jumping, also show these char-
acteristics, and thus are hard to distinguish from real falls.
Moreover, many falls in the elderly are slow falls which show
lower activity levels. Existing work fails to detect slow falls
effectively because they only identify falls with high activity
levels.

In this paper, we present a grammar-based fall detection
framework which not only better distinguishes fall-like ac-
tivities from real falls, but also emphasizes the detection of
slow falls. We utilize posture information extracted from on-
body sensors and context information collected from sensors
deployed in the house to reduce false positives. A fall in our
framework is detected as a sequence of sensor events. We
provide a context-free grammar to define these sequences so
that the framework can be easily extended to detect more
kinds of falls. Our case study shows that our method can
distinguish various fall-like activities from real falls and can
also effectively detect both fast falls and slow falls. The in-
tegration evaluation shows that our method achieves both
high sensitivity and high specificity.
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1. INTRODUCTION
Falls are one of the most detrimental events for the aged

population. About one out of three senior people 65 years or
older have at least one fall per year, and falls are the lead-
ing cause of injury-related hospitalization for elderly peo-
ple [19]. Detecting falls accurately can reduce the severe
consequences, and thus is of great importance.
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However, falls are difficult to accurately detect due to
three reasons. First of all, certain fall-like activities are hard
to distinguish from real falls. Existing solutions mainly use
accelerometers [17] to detect falls, because falls are usually
characterized by larger accelerations compared to normal
daily activities. However, focusing only on large accelera-
tions can result in many false positives by detecting fall-like
activities, such as sitting down quickly, or vigorous walking
or jumping, as falls. Some other fall detection algorithms
assume that falls are often accompanied with a prominent
change of body orientation, e.g. a typical fall can be detected
if one’s body orientation changes from standing upright to
lying prone horizontally on the floor [7]. However, these
kinds of systems also cause false positives when detecting
activities ending in horizontal position, such as lying onto
bed quickly.

Second, falls have different characteristics according to
their causes. Rubenstein et al. [27] summarized major causes
of falls in elderly people and their relative frequencies. The
first four causes for falls in elderly are: falls stemming from
environmental hazards (31%), gait/balance disorder (17%),
dizziness and vertigo (13%), and drop attacks (9%). In these
categories, falls caused by environmental hazards and gait
problems usually happen faster than those caused by dizzi-
ness and drop attacks. However, previous work on fall de-
tections only focuses on fast falls, yet cannot recognize slow
falls, which causes lots of false negatives.

Third, unlike activities of daily living (ADL), falls are ac-
cidents, so it is extremely difficult to collect data of real falls
of the elderly. Therefore, existing work on fall detection is
mainly based on falls simulated by younger people [6, 22].
However, not all types of falls can be handled by simulation,
e.g. falls caused by dizziness cannot be simulated. There-
fore, it is important to have a generic fall detection frame-
work which can be adjusted and extended as more real falls
are reported.

To overcome the problems of existing fall detection meth-
ods discussed above, in this paper, we present a grammar-
based, posture- and context-cognitive fall detection frame-
work that can detect falls with different activity levels. Our
framework can be easily adjusted to detect falls more accu-
rately as people gradually collect more data of real falls. Our
fall detection framework makes the following contributions:

• Our method can be easily tuned and extended. Falls
are difficult to detect accurately because there are so
many different types of them. In our framework, we
propose a context-free grammar to define various falls



as sequences of sensor events, so that our system can
be easily extended to handle new types of falls. The
formal definition and generic detection framework for
falls have not been studied before.

• Our method is posture-cognitive and person-specific.
The posture and movement levels are determined in a
novel way by using clustering and learning techniques,
which makes our method person-specific. Training on
posture and movement levels (not on falls) only re-
quires several minutes.

• Our method reacts to consequences of falls. When
evaluating the fall process, our method evaluates the
immediate consequence of all falls — resting on the
ground, combined with a period of low-level activities.
If we detect the condition, we use the previous 5 sec-
onds of data to determine if a fall actually occurred.

• Our method is context-cognitive. Environmental sen-
sors attached on a bed or couch are used to eliminate
false positives caused by fall-like activities also ending
with a lying posture such as lying on the bed quickly.

• Our method provides a mechanism to detect falls with
different activity levels. According to Rubenstein et
al.[27], falls in elderly are caused by several differ-
ent reasons such as environment-related accidents, gait
and balance disorder, and dizziness and vertigo. Falls
caused by environmental factors usually happen faster
than falls caused by dizziness. By using a context-free
grammar to define different kinds of falls, our method
detects both fast and slow falls. The detection of slow
falls has not been studied by previous work.

• Our method achieves high accuracy. In our evaluation,
our method detects all 32 fast falls and 22 out of 24
slow falls from normal or fall-like activities.

2. RELATED WORK
Existing fall detection solutions mainly analyze accelera-

tion data to detect falls. Prado et al. [9, 24] use a four-axis
accelerometer, fixed to the back, at the height of the sacrum,
to detect falls. They fix the sensor to the skin to minimize
the influence of the displacement of the sensor. Then the
system determines if there is an impact according to high
frequency acceleration components. Mathie et al. [18] uti-
lize a single, waist-mounted, tri-axial accelerometer to de-
tect falls. In their method, if the peek acceleration exceeds
a preset threshold, an abnormal event like a fall, a stumble
or a collision may have happened. Lindemann et al. [17] in-
tegrate a tri-axial accelerometer into a hearing aid housing
which is fixed behind the ear, and use thresholds for accelera-
tion and velocity to differentiate falls and Activities of Daily
Living (ADL). Kangas et al. [14] study the acceleration of
the waist, wrist, and head for falls and ADL, and show that
measurements from the waist and head are more useful for
fall detection. Their results also show that the acceleration
value ranges are overlapping for falls and ADL, which means
simple thresholds alone are not optimal for practical fall de-
tection. Bourke et al. [6] place two tri-axial accelerometers
at the trunk and thigh, and derive four thresholds, upper
and lower thresholds for both the trunk and thigh. Exceed-
ing any of the four thresholds indicates a fall occurred. Jeong

et al. [13] implement an acceleration monitoring system for
convenient monitoring of activity volume and recognition of
emergent situations such as falls. They use DSVM (differen-
tial signal vector magnitude) to distinguish falls from other
dynamic states like running and walking. Mobile phones
with accelerometers are also used to detect falls, e.g. Jiang-
peng et al. [8] use an HTC G1 phone to detect falls by ex-
amining if the acceleration exceeds predefined thresholds.
The problem with these methods is that some normal activ-
ities such as sitting down quickly and jumping also feature
large accelerations. Therefore, only using acceleration for
fall detection causes many false positives. In addition, these
methods cannot detect slow falls which do not feature large
accelerations.

To improve fall detection accuracy, some solutions utilize
both acceleration and body orientation information to de-
tect falls. Noury et al. [21] develop a fall detector consisting
of three sensors: a tilt sensor to monitor body orientation, a
piezoelectric accelerometer to monitor vertical acceleration
shock, and a vibration sensor to monitor body movements.
A fall is detected if the body position is standing and the
acceleration exceeds the threshold. In their later work [20],
they develop a sensor with two orthogonally oriented ac-
celerometers and use this sensor to monitor the inclination
and inclination speed to detect falls. Chen et al. [7] mon-
itor the body orientation before and after an impact, and
detect falls based on the change in orientation. Purwar et
al. [25] use a chest worn triaxial accelerometer to record
the acceleration and the tilt angle between the sensor and
the vertical direction. A fall is detected if both the accel-
eration and the angle cross the thresholds. Leijdekkers et
al. [15] present a prototype system for remote healthcare
monitoring. In this system, the body orientation is ana-
lyzed after a large acceleration, and a fall is detected if the
orientation is horizontal or not upright after some period of
inactivity. Bourke el al. [5] develop a threshold-based fall
detection algorithm using a bi-axial gyroscope sensor. They
put the gyroscope at the sternum, and measure the angu-
lar velocity, angular acceleration, and change of the trunk
angle to detect falls. Body orientation can help improve
the fall detection accuracy, but using one single device can
only monitor the orientation of the trunk, more posture in-
formation cannot be collected using this kind of method.
Qiang et al. [16] propose a three-phase fall detection algo-
rithm. Two TEMPO nodes [4], each of which features a
triaxial accelerometer and a triaxial gyroscope, are attached
on the chest and thigh. Using these two sensors, the activ-
ity volume, body postures, and the transition process from
a dynamic state to a static posture are monitored. If the
acceleration and rotational rate before a lying posture ex-
ceed thresholds, a fall is detected. This method uses preset
thresholds to recognize postures and evaluate the transition
process, which makes it less applicable for different people
and not able to detect slower falls.

There is also work trying to detect falls before they really
happen. Nyan et al. [22] attach two sensors on torso and
thigh. Each sensor contains a 3-D accelerometer and a 2-D
gyroscope. They show that falls can be detected with an
average lead-time of 700ms before the impact occurs. But
their work still uses thresholds of accelerations and rota-
tional rates to determine whether a fall is to happen.

Some other work uses cameras or image sensors to con-
firm the fall detection results generated by accelerometers.



Hansen et al. [11] use a camera phone to communicate with
elderly people by the emergency service when a fall is de-
tected. Tarbar et al. develop a home care network [28].
In their system, a user wears a badge node providing user-
centric event sensing functions such as detecting falls, and
the appropriate location of the user is detected by measur-
ing the Received Signal Strength Indicator (RSSI). When a
fall is detected by the badge, the most nearby image sen-
sor node is activated for further posture analysis. Though
using cameras can improve the fall detection accuracy, it is
not feasible when the user is in an open area. In addition,
privacy is a big concern for people regarding using a camera
to monitor them all the time.

Besides solutions outlined above, complex inference tech-
niques are also utilized to improve activity recognition ac-
curacy. Raghu et al. [10] attach five accelerometers to a
jacket, and perform activity recognition by using Hidden
Markov Models to analyze acceleration data. Quwaider et
al. [26] distinguish activities with different activity intensity
levels, such as run, walk, and sit, by transforming collected
acceleration data to the frequency domain. Low activity
postures, such as sit and stand, are distinguished by using
Hidden Markov Models to analyze RSSI values from mul-
tiple sensors. Pham et al. [23] compute the relative energy
distribution over the body according to the acceleration data
collected from right-hand top, right-hand bottom, left-hand
top, left-hand bottom, and waist. Then the activity recog-
nition is performed using a naive Bayes learner. He et al.
[12] use Discrete Cosine Transform (DCT) to transform ac-
celeration data to the frequency domain and then use Sup-
port Vector Machine (SVM) to classify different activities.
Using complicated inference techniques makes the activity
recognition system more reliable, but it also costs significant
computational resources. Moreover, most of these methods
need to learn the activity patterns before doing the classifi-
cation, but activity patterns for falls are extremely difficult
to obtain.

There are also commercial products able to detect falls.
Many are based on a watch device that includes accelerom-
eters using thresholds as discussed above. WellAWARE [1]
markets a floor vibration sensor used to detect falls in spe-
cific locations such as near a bed. This system may consider
many normal activities such as stamping as falls. Philips’
Lifeline [2] uses a help button to issue medial alerts when a
fall happens. However, when a really serious fall happens,
people may not be able to push the button. GE’s Quiet-
Care [3] system detects falls using motion sensors: if an el-
derly person stays in one place like the bathroom for a long
time, a fall might have happened. This system lacks fast re-
sponse. While these products are being used, unfortunately,
as far as we know, there is no substantial data published as
to the false alarm rates for these products.

3. DATA ACQUISITION
Two kinds of sensors are used in our fall detection system:

the TEMPO 3.1 nodes [4] and the widely used MICAz motes
with MTS310 sensor boards. The TEMPO nodes are used
to monitor the acceleration and rotational rates of different
parts of the body, and the MICAz motes are used to monitor
the vibration of specific furniture such as a bed to retrieve
the subject’s location context information.

The TEMPO 3.1 node includes a tri-axial accelerometer
and a tri-axial gyroscope as shown in Figure 1(a). The

(a)

(b)

Figure 1: (a) The TEMPO 3.1 sensor node; (b) The
data acquisition system setup.

MMA7261QT tri-axial accelerometer, made by Freescale Semi-
conductor, can monitor acceleration within a range of ±10g.
The tri-axial gyroscope consists of an InvenSensce IDG-300
dual-axis gyroscope and an Analog Devices ADXRS300 Z-
axis gyroscope. The IDG-300 can monitor angular velocity
between ±500◦/s. The ADXRS300 can monitor angular ve-
locity between ±300◦/s. The sensors are controlled by an TI
MSP430F1611 microcontroller. The sampling rate is set to
120Hz, a bandwidth exceeding the characteristic response of
human activities, to guarantee body movement details can
be captured.

The MTS310 sensor board features a bi-axial accelerome-
ter, which can monitor acceleration between ±2g. The sam-
pling rate is set to 2Hz, which is sufficient for monitoring
furniture vibrations.

Figure 1(b) shows the setup of our data acquisition sys-
tem. In our experiments, we attach 5 TEMPO nodes to
human body as shown in Figure 1(b). Using 5 nodes en-
ables us to collect significant amounts of data to obtain very
high accuracy and determine which nodes and locations are
most critical. Due to space limitations we do not show these
performance results, but we see that at least 3 nodes are
required (chest, ankle, and wrist). The extra 2 nodes do im-
prove performance and in the future when such nodes can
be unobtrusively embedded in clothes using 5 nodes (adding
on the thigh and waist) would be preferred.

The MICAz nodes are fixed to furniture including a bed
and a chair. The subject is located by monitoring the vibra-
tion of the furniture.

To make sure our system works for a wide variety of situa-
tions, during the following experiments, three graduate stu-
dents engaged in a battery of tests designed to simulate falls
(fast fall forward/backward/leftward/rightward/ag-ainst wall



Figure 2: The main process to detect falls: posture
recognition, localization, and fall process evaluation
for both fast and slow falls.

and slow falls), fall-like activities (sit down fast upright, sit
down fast reclined, jump into bed, stumble, jump), and nor-
mal activities (stand, sit, lie, walk, run). All fall data was
taken on hard surfaces.

4. FALL DETECTION FRAMEWORK

4.1 The Fall Detection Process
In our fall detection framework, we use a context-free

grammar to define various falls as sequences of sensor events.
These events can be the raw readings from on-body sensors
exceeding thresholds, or more high-level information, such
as the posture and location of the subject, inferred from the
low-level sensor readings. As shown in Figure 2, the de-
tection process can be divided into two main steps: event
extraction and fall process evaluation.

During event extraction we buffer a short period of recent
sensor readings and calculate high-level features. These raw
readings and derived features are used later during fall pro-
cess evaluation to determine if a fall has happened. In our
current system, we calculate two kinds of high-level features:
the posture and location of the subject. Unlike previous
work using preset inclination thresholds [29] to determine
postures, no preset thresholds are used in our system when
calculating the posture of the subject by using clustering
and learning techniques. Therefore, our posture recognition
algorithm adapts to different users automatically. The lo-
cation of the subject is detected by the sensors attached on
bed and couch.

The key part of the fall process evaluation is a set of rules.
Each rule defines a type of fall using the context-free gram-
mar so that it can be parsed automatically. Then we com-
pare the rules against the readings and features collected in
the previous step to determine if a fall has happened. In
this step we evaluate both fast falls and slow falls according
to their respective rules.

In the following of this section, we first present the context-
free grammar used to define falls, then discuss the extraction
of posture information from on-body sensor readings, and
discuss how to retrieve context information from environ-

F → S (1)

S → E|ETS (2)

E → (E,E)|(SENSOR,FEATURE)|P |LOC (3)

T → (time,C)|(time, time)|ε (4)

SENSOR→ chest|waist|wrist|thigh|ankle (5)

FEATURE → (threshold, C)|(threshold, threshold) (6)

C →< | > (7)

P → standing|sitting|lying (8)

LOC → bed|couch|other (9)

Table 1: The production rules of the context-free
grammar for defining fall processes.

Non-terminal Meaning
F a fall process
S a sequence of sensor events
E a sensor event
T the time interval between two sensor events
SENSOR which sensor the readings are collected from
FEATURE the feature of the collected readings
C a comparison with time interval or threshold
P the subject’s posture
LOC the subject’s location

Table 2: The meanings of non-terminals in the
context-free grammar.

mental sensors. Last we present the fall process evaluation.

4.2 Context-Free Grammar for Defining Falls
In our framework, a fall is defined as a sequence of sensor

events. This sequence can be generated using our context-
free grammar shown in Table 1. The meanings of the non-
terminals of the grammar are shown in Table 2. Some of the
expressions in Table 1 also have special meanings as shown
in Table 3.

Rule 3 of the grammar shows that the sensor events used
to define falls can be divided into two categories: sensor
readings exceeding thresholds (or within two thresholds)
and high-level features derived from sensor readings includ-
ing the posture (P ) and location (LOC) of the subject. The
initial thresholds used in specific rules are determined based
on simulated falls as shown later in Sec. 4.5.1, and Sec. 4.5.2.

Expression Meaning
(E,E) two events happen at the same time

(time,C)
time interval between two events is
smaller (<) or larger (>) than time

(time, time)
time interval between two events is
between two values of time

(threshold, C)
sensor readings are smaller (<)
or larger (>) than threshold

(threshold, threshold)
sensor readings are between
two values of threshold

Table 3: The meanings of expressions in the context-
free grammar.



Figure 3: The process of posture recognition.

Our framework easily permits adjusting the thresholds if
needed.

To demonstrate the usage of the proposed grammar, we
use it to define several falls and fall-like activities:
Normal fast fall:

(chest, (threshold,>))(lying, other)
Forward slow fall:

(thigh, (threshold,>))(2s,<)
(wrist, (threshold,>))(lying, other)

Sitting down fast to couch:
(waist, (threshold,>))(sitting, couch)

Lying onto bed quickly:
(chest, (threshold,>))(lying, bed)

From these examples, we can see it is straightforward to
define falls and fall-like activities using the grammar.

Our framework can be extended easily in two ways:

• Extending the grammar. In actual deployments, more
sensors can be used to get additional information. For
example, we can attach the MICAz node on a shower
head to detect if the subject is showering. In this case,
showering can be added as a new terminal in Rule 3.

• Adding new rules. Under a given grammar such as in
Table 1, to detect a new kind of fall or fall-like activity,
we only need to write a new rule using this grammar,
and then the rule can be parsed automatically so that
the system will be able to recognize this specific type
of fall or fall-like activity.

4.3 Posture Recognition
There are many different types of falls, but most of them

have the same immediate consequence — lying on the ground,
combined with a period of low-level activities. Therefore,
posture is an important feature to detect falls. Figure 3
shows the process of posture recognition in our framework:
we first divide activities into three categories according to

Figure 4: The standard deviation of the linear ac-
celerations at the chest (Node 1), waist (Node 2),
wrist (Node 3), thigh (Node 4), and ankle (Node 5)
for various activities.

their dynamic levels, then we extract posture information
when the subject is in low-level dynamic activities. During
the process, by using the clustering and learning techniques,
we do not need to use preset thresholds to detect postures.

4.3.1 Activity Dynamic Level
We use the standard deviation of the acceleration read-

ings from TEMPO nodes to determine the person’s activity
level. The monitoring cycle is one second, which means we
calculate the standard deviation of the collected data every
120 samples.

The acceleration of each sensor can be calculated using
Equation (10), where ai is the vector magnitude linear ac-
celeration of Node i, and aix , aiy , aiz are the acceleration
readings along the x-, y-, and z-axis.

ai =
√
a2ix + a2iy + a2iz (i = 1, 2, · · · , 5) (10)



Figure 5: Gray line: clustering results of dynamic
levels of different activities (1: Low; 2: Medium;
3: High); Black line: posture clustering results
when activity dynamic levels are classified as low
(1: standing; 2: sitting; 3: lying).

Figure 4 shows the standard deviation of the accelerations
at different parts of the body when performing various activ-
ities. From Figure 4, we can see some activities like running
are more dynamic than others like walking or standing still.
Therefore, according to different standard deviation values,
we divide human activities into three categories: high dy-
namic activities like running or jumping, medium dynamic
activities like transactions between postures or walking, and
low dynamic activities like standing, sitting, or lying.

Instead of using simple thresholds to determine activity
categories, we use k-means clustering to partition activity
dynamics into three categories. The gray line in Figure 5
shows the results of cluster analysis. The input data of the
cluster analysis is the standard deviations of the acceleration
as shown in Figure 4. From Figure 5 we can see that the
results of clustering activity levels of the activities shown in
Figure 4 are all correct: falling forward/backward/left/rig-
ht/against wall, getting into bed, stumbling, running, and
jumps are clustered as high dynamic activities (Class 3); ac-
tivities including sitting down fast, walking, and the trans-
actions between activities are clustered as medium dynamic
activities (Class 2); when the person is standing, sitting, and
lying, the activity dynamics are clustered as low (Class 1).
Based on the clustering results, we build a naive Bayesian
classifier to differentiate activity dynamic levels.

4.3.2 Extracting Posture Information
When activity dynamic levels are classified as low during

one second, we recognize the postures (standing, sitting, or
lying) of this one second time period to determine if there
is possibly a fall.

In our experiment, we first perform an initial calibration
for the stationary standing posture. In this step, we record
the accelerometer readings from Nodes 1, 2, 4 and 5 as shown
in Figure 1(b). Node 3 is not used because it is attached on
the wrist and does not strongly relate to postures. Then
we calculate the angle changes of each node based on the
accelerometer readings along each axis using Equation (11).

θi =
180

π
arccos(

âixaix + âiyaiy + âizaiz√
â2ix + â2iy + â2iz ·

√
a2ix + a2iy + a2iz

)

(11)

Figure 6: Collect readings from MICAz motes at-
tached on bed and couch

In Equation (11), i = 1, 2, 4, 5, θi is the orientation change
of Node i, âix , âiy , âiz are the acceleration readings of Node
i during the calibration phase along the x-, y-, and z-axis,
and aix , aiy , aiz are the mean values of the accelerometer
readings along each axis during low dynamic activities.

The black line in Figure 5 shows the results of posture
clustering. Note that posture clustering results are only
available when activity dynamic levels are low. In this step,
we use k-means clustering to partition postures into three
categories: standing (Class 1), sitting (Class 2) and lying
(Class 3). The input data for posture clustering is the vec-
tor (θ1, θ2, θ4, θ5). In Figure 5, all postures are clustered cor-
rectly. Based on the results we use a regression tree learner
to build the posture classifier, which is used to recognize
postures.

In Sec. 4.3.1 and Sec. 4.3.2, we first determine the activ-
ity level of the subject, then extract posture information if
the subject is in low activity level. The learning process for
posture recognition only requires a few minutes, and dur-
ing this period the subject performs normal daily activities
and three postures (standing, sitting, and lying). Unlike
most previous work, by using clustering and learning tech-
niques in our method, the whole posture recognition process
can be automatically adjusted across different subjects, and
no predefined thresholds are used. This makes our method
person-specific.

4.4 Context Information Collection
Some activities like lying onto the bed quickly are ex-

tremely difficult to distinguish from real falls only using
body sensors. However, by combining context information
such as the location of the subject, these fall-like activities
can be distinguished from real falls easily: when the on-
body sensor readings indicate a fall has happened, if the
location of the subject is on the bed, then it is obviously a
false alarm. Sensors in environment are becoming common
in assisted living systems, e.g. GE’s QuietCare[3] uses envi-
ronmental sensors to learn residents’ routine. In our system,
we collect context information using ambient environmental
MICAz motes (as shown in Figure 6).

Figure 6 shows a typical deployment of environmental sen-
sors to retrieve location information. In this setting, one
MICAz mote (with MTS310 sensor board) is attached onto
the bed, the other is attached onto the couch. Every half
second each MICAz mote sends x- and y-axis acceleration
readings back to the sever. The right of Figure 6 shows the



data collected from these sensors. If the deviation of the col-
lected data is larger than a threshold value (we use 100 in
our experiments), we know the subject is just sitting down
to the couch or lying onto the bed.

In fact, many other kinds of context information can be
collected from environmental sensors. For example, the as-
sisted living system AlarmNet [30] uses X10 sensors to track
which room the subject is in. By utilizing the data col-
lected by these assisted living systems, we can have more
knowledge about the subject, which can help improve fall
detection accuracy.

4.5 Fall Process Evaluation
After knowing the subject is resting on the ground with

low-level movements (Sec. 4.3), and not on a bed or in the
couch (Sec. 4.4), our method checks the data for 5 seconds
earlier to evaluate whether the process that achieved this
posture is a fall. We do not use learning techniques dur-
ing fall process evaluation because falls are rare accidental
events and it is not feasible to train the system by letting
elderly people fall. The thresholds used for the fall process
evaluation are determined by simulated falls.

Falls have different characteristics according to their causes.
Rubenstein et al. [27] summarized major causes of falls in
elderly people and their relative frequencies. The first four
causes for falls in elderly are: falls stemming from environ-
mental hazards (31%), gait/balance disorder (17%), dizzi-
ness and vertigo (13%), and drop attacks (9%). In these
categories, falls caused by environmental hazards and gait
problems usually happen faster than those caused by dizzi-
ness and drop attacks. However, previous work on fall de-
tections discussed in Section 2 only focuses on fast falls.

In this section, we show that both fast and slow fall pro-
cesses can be defined and detected using the production rules
in our framework.

4.5.1 Fast Falls
In the examples in Sec. 4.2, we define fast falls as

(chest, (threshold,>))(lying, other).

Though this definition is enough as a demonstration of the
usage of the proposed grammar, in a real fall detection sys-
tem, we need to figure out which LOC is more useful for
detecting a fall, and what the specific value of the threshold
should be. To solve this problem, three graduate students
performed five kinds of fast falls (fall forward/backward/left-
ward/rightward, fall after stumbling) and typical normal
daily activities (walk, sit down, lie down) two to three times.

Figure 7 shows the maximum acceleration of each node
during different activities. From Figure 7, we can see that
in spite of some overlap the max acceleration during a fall
is most of the time much larger than during normal activi-
ties. Therefore, as shown here and in many previous works
we can use preset thresholds to detect fast falls. Nodes at-
tached on chest (Node 1), waist (Node 2), and thigh (Node
4) are more useful because their max accelerations have al-
most no overlap with those of normal activities. However,
accelerations of nodes attached on wrist (Node 3) and an-
kle (Node 5) often have overlap between different activities
because of impulsive movements, thus they are not suitable
for detecting fast falls. In our method, a fast fall process
is detected if a1 > 3.0g and a4 > 3.0g. Therefore, the rule

Figure 7: The max acceleration of nodes for different
activities: 1) fall forward; 2) fall backward; 3) fall
leftward; 4) fall rightward; 5) stumble and fall; 6)
walk; 7) sit down; 8) lie down.

used to detect fast falls can be written as Equation (12).

((chest, (3.0g,>)), (thigh, (3.0g,>)))(lying, other) (12)

4.5.2 Slow Falls
Besides fast falls, falls caused by dizziness and drop at-

tacks are also common in elderly people. Drop attacks are
falls associated by sudden leg weakness, but without dizzi-
ness. For elderly people, lacking exercise results in poor
muscle condition, decreased strength, and loss of flexibility.
Therefore, when bending, reaching, or rising from a chair or
bed, elderly people are prone to falls.

These falls are not as sudden as fast falls, and the ac-
celerations of these falls are not as large. Therefore, it is
hard to distinguish them only using acceleration thresholds.
Figure 8 shows two simulated slow falls: the person rose
from a chair, then fell forward to the ground before he could
stand steadily. During the fall process, the accelerations of
both Node 1 and Node 4 are under the black line (3.0g) and
thus not large enough to be detected as a fall according to
Equation (12).

However, in this kind of fall, people usually push their
hands out to cushion the body, so there are large accel-



Figure 8: Accelerations of Node 1 (chest), Node 3
(wrist), and Node 4 (thigh) for a slow fall caused by
dizziness.

eration readings from wrist (Node 3) as shown in Figure 8.
Thus the fall process can be detected as a sequence of sensor
events: sitting posture, large accelerations from wrist, and
resting on the ground with low-level movements. Usually
the movement of wrist is not suitable for fall detection be-
cause its impulsiveness, however, as an event of a sequence,
it can be useful. Therefore, the rule used to detect this kind
of slow falls can be written as Equation (13).

sitting(wrist, (8.0g,>))(lying, other) (13)

5. EVALUATION
In this section, we evaluate our fall framework by studying

two special cases and performing system integration tests.
By discussing the first special case, we show how to use
context information to distinguish fall-like activities from
real falls. In the second case study, we show how our system
deals with slow falls. The system integration test then shows
the overall performance of our fall detection system.

5.1 Special Case Study

5.1.1 Lying onto Bed Quickly
Lying onto the bed quickly is extremely difficult to dis-

tinguish from real falls, because they all feature large accel-
erations and fast body orientation changes. The first five
plots in Figure 9 show six seconds of acceleration from Node
1 to Node 5 when the subject lies onto the bed quickly. In
Sec. 4.5.1, we use a1 > 3.0g and a4 > 3.0g as thresholds
to detect fast falls. However, in Figure 9 we can see every
node has max acceleration larger than 3.0g, so most previous
work only based on monitoring acceleration cannot handle
this fall-like activity correctly.

However, distinguishing lying onto bed from real falls be-
comes straightforward if we know the location of the subject.
The last plot in Figure 9 shows the accelerometer readings
of the MICAz sensor attached to the bed. When the subject
gets into bed, the bed sensor shows large readings (from 2s
to 4s), and the activity will not be detected as a fall in our
system.

Figure 9: Accelerations of Node 1 (chest), Node 2
(waist), Node 3 (wrist), Node 4 (thigh), Node 5 (an-
kle), and bed sensor for lying onto bed quickly.

5.1.2 Fall against Wall
In this section, we use an example to illustrate how to

detect a new type of fall — fall against a wall — using our
system. In this kind of fall, the subject first touches the
wall for support, then slips down to the ground, and ends
with a sitting position. Figure 10 shows typical accelerom-
eter readings from Node 1 (chest) and Node 4 (thigh) when
falling against a wall. When the subject touches the wall,
the acceleration of Node 1 (chest) is lager than that of Node
4 (thigh). However, when the subject slips down to the
ground, the acceleration of the thigh is larger. Based on
this observation, we can define a fall against a wall as

((chest, (threshold,>)), (thigh, (threshold,<)))
((chest, (threshold,<)), (thigh, (threshold,>)))
(sitting, other)

From our experiments, using 3.0g as the value of threshold
can detect falls against a wall.



Figure 10: Accelerations of Node 1 (chest) and Node
4 (thigh) for falling against wall

5.2 System Integration Tests
To evaluate our algorithm as a complete system, three stu-

dents performed a series of activities: simulated each kind
of falls 8 times (falling forward/backward/left/right/against
wall, falling when rising from chairs/bed), 56 falls were sim-
ulated in all; also the students performed other fall-like ac-
tivities and normal activities including sitting down fast up-
right/reclined, getting into bed, stumbling, walking, run-
ning, and jumping. Each fall-like and normal activity was
performed 2 times by each person.

Figure 11 shows the sensitivity (true positive performance,
the number of detected falls divided by the total number of
falls) and specificity (true negative performance, the number
of detected fall-like or normal activities divided by the total
number of these activities) of our fall detection framework.

Figure 11(a) shows the detection results of both fast falls
and slow falls: fast falls include falling forward, backward,
leftward and rightward; slow falls include falling against a
wall, falling when rising from a chair or bed. All fast falls
are detected correctly. Only two slow falls (against wall)
out of all 24 slow falls are not detected using our method.
This is because we recognized the sitting posture after the
fall against a wall as a lying posture. By contrast, 20 out
of all 24 slow falls (8 falls against wall, 5 falls when rising
from chair, 7 falls when rising from bed) are not detected
only using thresholds (3.0g) for the accelerations of Node 1
(chest) and Node 4 (thigh).

Figure 11(b) shows the detection results of fall-like activ-
ities (including sitting down fast ending with an upright or
recolined position, getting into the bed quickly, and stum-
bling) and some normal daily activities (including walking
and running). Our method distinguishes all these activities
from falls. For fall-like activities such as sitting down and
getting into the bed, the environmental sensors play a key
role to eliminate the false alarms. The ending posture (ei-
ther lying or sitting, definitely not standing) in the definition
of falls distinguishes stumbling from real falls.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a grammar-based fall detec-

tion framework which uses both posture and context infor-

(a)

(b)

Figure 11: (a) True positive performance (sensitiv-
ity); (b) True negative performance (specificity).

mation, and can detect both fast and slow falls. By using
a context-free grammar to define various falls as sequences
of sensor events, our framework can be easily tuned and ex-
tended to detect new types of falls. This feature will be very
useful as the system is used by the elderly and new data on
falls becomes available. In our work high-level features such
as posture and location information are utilized to improve
detection accuracy. Slow falls, which are common in the el-
derly yet have not been studied by previous work, can also
be effectively detected using our method. Evaluation shows
our method can distinguish most falls from normal activities
correctly.

In the paper, only common slow falls are discussed, other
slow falls need to be handled by adding new rules in the fu-
ture. In addition, irregular physiological data like low blood
pressure can also be useful to detect falls, as more types of
sensor are integrated to BSNs, our framework can be ex-
tended to achieve better fall detection accuracy.
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