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Abstract

In surveillance and tracking applications, wireless sensor nodes collectively monitor the existence of intruding
targets. In this paper, we derive closed form results for predicting surveillance performance attributes, represented
by detection probability and average detection delay of intruding targets, based on tunable system parameters,
represented by node density and sleep duty cycle. The results apply to both stationary and mobile targets, and shed
light on the fundamental connection between aspects of sensing quality and deployment choices. We demonstrate
that our results are robust to realistic sensing models, which are proposed based on experimental measurements of
passive infrared sensors. We also validate the correctness of our results through extensive simulations.

I. INTRODUCTION

A broad range of current sensor network applications involve surveillance. One common goal for
such applications is reliable detection of targets with minimal energy consumption. Although maintaining
full sensing coverage guarantees immediate response to intruding targets, sometimes it is not favorable
due to its high energy consumption. Therefore, designers are willing to sacrifice surveillance quality in
exchange for prolonged system lifetime. The challenge is to obtain the analytical relationship that depicts
the exact tradeoff between surveillance quality and system parameters in large-scale sensor networks. In
this paper, we characterize surveillance quality by average detection delay and detection probability of
intruding targets. For system parameters, we are mainly concerned with duty cycle and node density. This
knowledge answers the question of whether a system with a set of parameters is capable of achieving its
surveillance goals.

In this paper, we establish the relationship between system parameters and surveillance attributes.
Our closed-form results apply to both stationary and moving targets, and are verified through extensive
simulations. Throughout this paper, we adopt the model of unsynchronized duty-cycle scheduling for
individual nodes. In this model, nodes sleep and wake-up periodically, which we call duty-cycling. Nodes
agree on the length of the duty cycle period and the percentage of time they are awake within each duty
cycle. However, the wakeup times are not synchronized among nodes. We call this model, random duty-
cycle scheduling. There are two reasons for this choice. First, random scheduling is probably the easiest to
implement in sensor networks since it requires no coordination among nodes. Coordination among nodes
takes additional energy and may be severely impaired by clock drifts. Second, many surveillance scenarios
pose the requirement of stealthiness (i.e. that nodes minimize their electronic signatures). Coordinating
node schedules in an ad hoc network inevitably involves some message exchange which creates a detectable
electronic signature. In contrast, random scheduling does not require communication. Each node simply
sets its own duty-cycle schedule according to the agreed-upon wakeup ratio, and starts surveillance. No
extra messages need to be exchanged before a potential target appears. Based on these two considerations,
we focus this paper only on random duty-cycle scheduling.

We make two major contributions in this paper. First, for the first time, we obtain closed-form results
to quantify the relationship between surveillance attributes and system parameters. The advantage is that
we can now answer a variety of important questions without the need for simulation. For example, to
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decrease the average detection delay for a potential target by half, how much should we increase the
node density? In this paper, we demonstrate that this problem, along with many others, can be answered
analytically based on our results. Second, we propose a realistic (irregular) model of sensing based on
empirical measurements. This model is then incorporated into our simulation to prove the robustness
of our analytic predictions. The results show that even under the irregular sensing model, the analytic
closed-form results are still quite accurate.

The rest of this paper is organized as follows. Section II presents the notations and assumptions of
the paper. Section III considers stationary target detection. Section IV addresses mobile target detection.
Section V presents the irregular sensing model based on experiments. Section VI discusses related work
and Section VII concludes the paper.

II. NOTATIONS AND ASSUMPTIONS

In this section, we present the notations and assumptions for our derivations. First of all, we assume
that nodes are independently and identically distributed conforming to a uniform distribution. Density d
is defined as the total number of nodes divided by area in which the system is deployed, Asystem. In our
analysis, we adopt a simple sensing model in which a point is covered by a node if and only if the distance
between them is less than or equal to the sensing range R of the node. For simplicity, we first assume that
all nodes have the same sensing range in all directions. We shall address sensing irregularity in Section
V. Each node is assumed to have a scheduling period T and a duty cycle ratio β, 0 ≤ β ≤ 1, that defines
the percentage of time the node is awake. Each node chooses its wakeup point tstart independently and
uniformly within [0, T ), wakes up for a period of time βT , and then goes back to sleep until T + tstart.
Finally, we assume that (for all practical purposes) the entire system area is covered when all nodes are
awake.

Each target in the area moves in a straight line at a constant speed v in our analysis. We assume that
all targets are point targets so that their physical sizes can be neglected. Observe, however, that larger
targets can still be analyzed by increasing the sensing range used in the analysis by the diameter of the
target to account for the larger sensory signature.

III. STATIONARY TARGET SENSING ANALYSIS

In this section, we analyze the expected value and probability distribution of detection delay td for a
stationary, persistent target (e.g., a localized fire). We also derive the detection probability for a stationary,
temporary event with a lifetime of T ′ (e.g., a conversation burst emanating from a fixed locale).

First, according to our assumptions, since nodes are deployed with a uniform distribution, the number of
nodes within an area of πR2 conforms to a binomial distribution B(Asystemd, πR2/Asystem). For a sensor
network with a reasonable scale, Asystemd is a large number, and (Asystemd)(πR2/Asystem) = πR2d is
a constant, denoted as λ. With these conditions, the binomial distribution can be approximated by a
Poisson distribution with parameter λ. Observe that λ = πR2d is the average number of nodes within
a sensing range. The probability that there are n nodes covering an arbitrary geometric point is λn

n!
e−λ,

n = 0, 1, 2, .... The probability that no node covers the point (i.e., n = 0) is e−λ. To make this probability
smaller than 0.01, λ should be at least − ln 0.01 ≈ 4.6. Observe that the detection delay for points that
are not covered is infinite, which makes the expected detection delay for the whole area infinitely large.
To avoid this problem, we take into account only those points that are covered by at least one node. Our
calculations above indicate that as long as there are more than 4.6 nodes on average within a sensing
range, the probability that a point is not covered is less than 0.01, which is negligible.

In the rest of the paper, we extensively use two general results from theory of probability. First, if
the probability of an event A occurring in a single experiment is p, and if the number of experiments
conforms to a Poisson Distribution with parameter λ, the probability of event A occurring at least once
in the series of experiments is:

P = 1 − e−pλ (1)
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In the analysis, we first calculate the probability of detection when the target is covered by one node
in a certain area. Since the number of nodes in a certain area conforms to a Poisson distribution, we get
the probability that at least one node covers the target.

Another important result relating to our derivation is Proposition 11.6 in [16], which is stated as follows:
Proposition 11.6: Let X be a nonnegative random variable, then

E(X) =

∫ ∞

0

P (X > x)dx (2)

Since the cumulative distribution function (CDF) of X cdf(x) = P (X ≤ x), we have

E(X) =

∫ ∞

0

(1 − cdf(x))dx (3)

We will use this fact to derive the average detection delay for both stationary and mobile target detection,
after we get the probability that the target is detected within a certain period of time.

Now consider an arbitrary point in the area to be monitored. Suppose node O is the only node covering
this point. The duty cycle of node O is shown in Figure 1. Denote the random variable corresponding to
the detection delay at this point as td. Since the node has a probability β of being awake, we have:

P (td = 0) = β (4)

The probability density function (PDF) of td f(τ), where 0 < τ ≤ T − βT , conforms to a uniform
distribution:

f(τ) =
1

T
(5)

as long as the target can arrive uniformly anywhere within the duty-cycle. Therefore, when there is only
one node covering the point, the cumulative probability distribution for the detection delay is:

Ftd(τ) = P (td ≤ τ) = β +
τ

T
, (6)

where 0 ≤ τ ≤ T − βT . When there are n nodes covering the point, we consider the detection of each
node as an experiment. Let event A correspond to the fact that the target is detected within an interval
time no larger than td. Substituting for the single event probability p in Equation (1) from Equation (6)
we get the probability of event A:
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P (A) = 1 − e(−λτ
T

−βλ) (7)

Since we focus only on those points that are covered, the CDF of detection delay for such points is
P (A)/1 − e−λ, or:

Ftd (τ) =
1 − e(−λτ

T
−βλ)

1 − e−λ
, 0 ≤ τ ≤ T − βT (8)

where e−λ is the probability of voids.
Second, according to Equation (3), the expected value of the delay td is:

E(td) =

∫ ∞

0
P (td > t)dt =

∫ ∞

0

e−λ( t
T

+β)

1 − e−λ
dt =

T

λ
e−βλ/(1 − e−λ) (9)

In particular, when the duty cycle β approaches 0 and 1− e−λ approaches 1, Equation (9) turns into T/λ.
Therefore, we conclude that when the duty cycle is sufficiently small and the density is sufficiently large,
the average detection delay is inversely proportional to node density.

Next, we extend the above result to temporary events with lifetime T ′. The key observation is that
the detection probability for a temporary event with lifetime T ′ is the same as the probability that the
detection delay for a persistent target is less than or equal to T ′. Therefore, the detection probability is:

P (detection) =
1 − e(−λT ′

T
−βλ)

1 − e−λ
(10)

This section derived the detection delay and detection probability for stationary targets under random
scheduling in large sensor networks with certain duty cycle and density. We shall validate these analytic
results through simulations. Next, we turn our attention to mobile targets.

IV. MOBILE TARGET SENSING ANALYSIS

In this section, we analyze the detection delay for mobile targets. We consider a target that moves at
velocity v along a straight path, and consider four detection scenarios, as shown in Figure 2. We categorize
these scenarios based on whether or not the start or end point of the target path is inside the system area.
For target scenarios of type I and type IV (where the end-point is outside the monitored area), we are
interested in the probability that the target is detected by at least one node before it leaves the area. For
target scenarios of type II or type III (where the end-point is inside the monitored area), we are interested
in the expected time and distance the target travels before it is detected. The system area is assumed to be
rectangular, in which nodes are randomly deployed. The target is detected within a radius R (or diameter
2R) which constitutes the width of the traversing areas shown in Figure 2. We focus on type I and type
II scenarios, and outline the results for the other two types.

We demonstrate a more detailed model for type II target detection in Figure 3 (type I model is similar).
Consider the traversing area S consisting of the rectangle and two half-circles in the figure. For a potential
target that travels from point A to point B (where distance AB = L), only nodes located within this area
can detect the target, for example, node M , which has an intersection length of l with the target’s moving
track. Therefore, we call this area the detection area. Since all nodes are deployed conforming to a
uniform distribution, the number of nodes in the detection area also conforms to Poisson Distribution
approximately. According to Equation (1) mentioned above, in order to find the probability of detection,
we only need to find the detection probability when there is only one node within this area.

Now consider node M . Since it has an intersection length with the target track, the potential target
takes time l/v to pass its sensing area. Therefore, the target appears to be a temporary event with a
lifetime of l/v to node M , which means it has a probability of min(β + l

vT
, 1) to be detected by node

M . Considering that node M could be anywhere within the detection area, we now analyze the average
detection probability for node M to detect the target.

Notice that β+ l
vT

can be at most 1,and if it is, the target will definitely be detected when it passes. This
fact categorizes potential targets into two types, fast and slow. For fast targets, the expression β + l

vT
is
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always smaller than or equal to 1. Therefore, we can obtain the expectation of detection delay directly by
integrating over the detection area. On the other hand, if v is small enough, β+ l

vT
can become larger than 1,

thus, we have to partition the detection area first before the integral. Observe that the maximal intersection
length between the target path and a sensor’s range is 2R. Therefore, if target velocity v ≥ 2R

(1−β)T
, then

β + l
vT

is always smaller than or equal to 1. We use 2R
(1−β)T

as the threshold between fast and slow targets.

A. Detection Analysis for Fast Targets

For a fast target we can express the probability that the target is detected given there is only one node
in the detection area, S, as follows:

P =

∫
S
(β +

l

vT
)ds/S = β +

∫
S lds

vTS
(11)

Thus, we only need to calculate
∫

S
lds and S.

Because of symmetry, we only need to calculate the integral
∫

S
lds within the first quadrant, as shown

in Figure 4.
For a type I target, we need to do the integral over area A and B, while for a type II target, we need

to do the integral over A, B and C.
1) Fast Type I Target Analysis: For a type I target, the area under consideration consists of area A and

B. Therefore, we have: ∫
SA+B

lds/SA+B =
φA + φB

LR/2
(12)

while

φA+B =

∫ R

0
dy

∫ L
2

0
2
√

R2 − y2dx =
πR2L

4
(13)

Thus, we get the overall probability as:

P = β +
πR2L

2RLvT
= β +

πR

2vT
(14)

2) Fast Type II Target Analysis: Similar to the type I target analysis, we have:
∫

SA+B+C

lds/SA+B+C =
φA + φB + φC

LR/2 + πR2/4
(15)

Therefore,

φA =

∫ R

0
dy

∫ L
2 −

√
R2−y2

0
2
√

R2 − y2dx =
πR2L

4
− 4R3

3
(16)

φB =

∫ R

0
dy

∫ L
2

L
2 −

√
R2−y2

(
L

2
+

√
R2 − y2 − x)dx = R3 (17)

φC =

∫ R

0
dy

∫ L
2 +

√
R2−y2

L
2

(
L

2
+

√
R2 − y2 − x)dx =

R3

3
(18)

Thus, we get the overall probability as:
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P = β +
πR2L

(2RL + πR2)vT
= β +

πRL

(2L + πR)vT
(19)

Note that for the case L < 2r, the derivation is a little different. However, the result remains the same
and for simplicity we omit the details of derivation.

We also have a more intuitive explanation for the calculation of
∫

S
lds. This expression is an integral

of a line segment of length l on the target’s locus for each point p in the traversing area S. Note that a
point p′ belongs to the line segment if and only if its distance from p is smaller or equal to R, the sensing
range. Therefore, the integral

∫
S

lds is equivalent to the integral
∫

L
sdl, where L is the locus of the target,

and s is the area in which each point has a shorter distance than R to dl. For type II targets, s is simply
πR2 and therefore

∫
S

lds is simply πR2L, which verifies Equation (14). It is a little more complicated for
type I targets since s can be smaller than πR2. For example, for point N in Figure 5, s is a half-lens. The
expression then becomes the integral of the overlapping area of the circular disk with radius R and the
traversing area over L. We can think it as a circular disk virtually moving from −L/2−R to L/2+R and
calculate the accumulation of overlapping areas. To make the calculation simpler, equivalently, we can
also imagine a fixed circular disk and virtually move the traversing area and calculate the accumulation
overlapping areas. This also gives a result of πR2L, which verifies Equation (19).

B. Detection Analysis for Slow Targets

Now consider v < 2R
(1−β)T

. The main difference in this case is that it is possible that for certain node
positions (x, y), l(x, y) > (1 − β)vT , therefore p(x, y) is 1 instead of β + l(x, y)/vT . Suppose there are
two partitions, U and V . In U , p(x, y) = β + l(x, y)/vT , and in V , p(x, y) = 1. Therefore, we have:

P =

∫
SU

(β + l
vT

)ds +
∫

SV
1

SA+B
ds =

∫
SU+V

(β + l
vT

)ds +
∫

SV
(1 − β − l

vT
)ds

SU+V

= β +

∫
SU+V

lds

(SU+V )vT
+

SV (1 − β) − ∫
SV

lds/vT

SU+V

Obviously, the term β +

∫
SU+V

lds

(SA+B)vT
is exactly what we have obtained for fast object analysis. So now we

need to calculate SV (1 − β) and
∫

SV
l. We classify the analysis into two cases according to type I and

type II targets.
1) Slow Type I target Analysis: In this type, the partition where p(x, y) = 1 is the rectangle area A in

Figure 7. We define another variable a such that β +2a/vT = 1. The height of the rectangle is
√

R2 − a2.

Observing that
SV (1−β)−∫

SV
lds/vT

SU+V
=

∫
SV

[(1−β)vT−l(x,y)]dxdy

SU+V vT
. Therefore, we have:

∫
V

[(1 − β)vT − l(x, y)]dxdy =

∫
A

[2a − l(x, y)]dxdy (20)

in which
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∫∫
A

[2a − l(x, y)]dxdy =

∫ √
R2−a2

0

∫ L
2

0
(2a − 2

√
R2 − y2)dxdy

=

∫ √
R2−a2

0
[aL − L

√
R2 − y2]dy = aL

√
R2 − a2 − L(

a
√

R2 − a2

2
+

R2

2
sin−1

√
R2 − a2

R
)

= [aL
√

R2 − a2 − LR2sin−1

√
R2 − a2

R
]/2

Therefore we obtain:

∫∫
A

[2a − l(x, y)]dxdy = Lk(R, a)/4 (21)

where
k(R, a) = 2a

√
R2 − a2 − 2R2cos−1(

a

R
) (22)

Finally, we get when L ≥ 2R, v < 2R
(1−β)T

, for a type I target,

P = β +
πR2 + k(R, a)

2RvT
(23)

2) Slow Type II target Analysis: In this type, the partition where p(x, y) = 1 is less regular. We still
define a such that β +2a/vT = 1. Observe Figure 8 plots the region where p(x, y) = 1, which includes A
and B, whose boundaries are formed by line y =

√
r2 − a2 and two circles which centered at (L/2−2a, 0)

and (L/2, 0), respectively. For (x, y) ∈ A ∪ B, p(x, y) = 1.
Similarly, we have: ∫

V
[(1 − β)vT − l(x, y)]dxdy =

∫
A+B

[2a − l(x, y)]dxdy (24)

in which

∫∫
A

[2a − l(x, y)]dxdy =

∫ √
R2−a2

0

∫ L
2 −

√
R2−y2

0
(2a − 2

√
R2 − y2)dxdy

=

∫ √
R2−a2

0
(
L

2
−

√
R2 − y2)(2a − 2

√
R2 − y2)dy

∫∫
B

[2a − l(x, y)]dxdy =

∫ √
R2−a2

0

∫ L
2 −2a+

√
R2−y2

L
2 −

√
R2−y2

[2a − (
√

R2 − y2 − L

2
− x)]dxdy

=

∫ √
R2−a2

0
[(2a −

√
R2 − y2 − L

2
)(2

√
R2 − y2 − 2a) + 2a2 − aL − 2a

√
R2 − y2 + L

√
x2 − y2]dy

Therefore we can obtain:

∫∫
A+B

[2a − l(x, y)]dxdy = (L − 2a)k(R, a)/4
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where
k(R, a) = 2a

√
R2 − a2 − 2R2cos−1(

a

R
) (25)

Finally, we get when L ≥ 2R, v < 2R
(1−β)T

, for a type II target,

P = β +
πR2L + (L − 2a)k(R, a)

(2RL + πR2)vT
(26)

Indeed, in Figure 8, we only plotted the case where 2a > R. For 2a < R, the derivation is similar, and
the results are the same.

When a = 0, k(R, a) = −πR2. When a = R, k(R, a) = 0. We also have

∂k(R, a)

∂a
= 4

√
R2 − a2 ≥ 0, (27)

so k(R, a) is a monotonically non-decreasing function of a. Interestingly, the area of B is exactly
−k(R, a)/2.

Denote m(R, β) as the function substituting a with (1 − β)vT/2 in k(R, a), then

m(R, β) = (1 − β)vT

√
R2 − (1 − β)2v2T 2

4
− 2R2 cos−1[

(1 − β)vT

2R
] (28)

m(R, β) is a monotonically non-increasing function of β. When β = 1− 2R
vT

, m(R, β) = 0. When β = 1,
m(R, β) = −πR2.

Additionally, for a slow type II target, if the travel distance L is less than (1 − β)vT , the detection
probability for a node located within the detection area cannot be larger than 1. Therefore, we should
treat this period of time in the same way as a fast target. Therefore, we can revise the final probability
as:

P = β +
πR2L + min((L − 2a)k(R, a), 0)

(2RL + πR2)vT
(29)

For slow targets, the intuitive understanding of the results is more complex. The absolute value of the
additional term k(R, a) corresponds to the overlapping area of two circular disks, as shown in Figure 6,
which is the geometric representations of

∫
S

lds and k(R, a).
3) Average Detection Delay and Probability: So far, we have finished the derivation of P (L, v) for

both slow and fast objects. Next we go on to find the detection probability for a type I target, and average
detection delay for a type II target.

First, consider fast targets. According to Equation 1, for a fast type I target, with a deployment width
of L, we obtain the detection probability as follows:

Pdetection(v) = 1 − e−2RLdP = 1 − e−2RLd(β+ πR
2vT

) (30)

while for slow targets, the result is:

Pdetection(v) = 1 − e−2RLdP = 1 − e−2RLd(β+
πR2+k(R,a)

2RvT
)

For fast type II targets, the cumulative distribution function of the detection delay td is:

Ftd(t) = P (td ≤ t) = 1 − e−d(2Rvt+πR2)(β+ πRvt
(2vt+πR)vT

) (31)

While for slow targets, the function is:

Ftd(t) = P (td ≤ t) = 1 − e
−d(2Rvt+πR2)(β+

πR2vt+min(0,(vt−2a)k(R,a))

(2Rvt+πR2)vT
)
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For fast targets, the expected detection delay turns out to be

E(Td) =

∫ ∞

0

e−βπR2d−vt(2Rβ+πR2

vT
)ddt =

e−βπR2d

(2Rβv + πR2

T
)d

(32)

Similarly, when v < 2R
(1−β)T

, the expected detection delay is1:

E(Td) =

∫ 2a

0
e−βπR2d−vt(2Rβ+ πR2

vT
)ddt +

∫ ∞

2a
e−βπR2d+

2ak(R,a)d
vT

−vt(2Rβ+
πR2+k(R,a)

vT
)ddt

=
e−βπR2d

(2Rβv + πR2

T
)d

[1 − m(R, β)e−(2RβvT+πR2)(1−β)d

2RβvT + πR2 + m(R, β)
]

C. Summary

So far, we have finished the derivation for type I and type II targets, and we now briefly outline the
results for type III and type IV targets:

Expected detection delay for fast type III targets:

E(Td) =
e−βπR2d/2

(2Rβv + πR2

T
)d

(33)

Expected detection delay for slow type III targets:

E(Td) =
e−βπR2d/2

(2Rβv + πR2

T
)d

[1 − m(R, β)e−(2RβvT+πR2)(1−β)d

4RβvT + 2πR2 + m(R, β)
]

Detection probability for fast type IV targets:

P = 1 − e−(2RL+πR2/2)d(β+ πRL
(2L+πR/2)vT

) (34)

Detection probability for slow type IV targets:

P = 1 − e
−(2RL+πR2/2)d(β+

πR2L+min((L−a)k(R,a),0)

(2RL+πR2/2)vT
)

(35)

D. Discussion

We now discuss the implications of our analytical results. First, we assume that almost all of the area
is covered, that is, 1−e−λ ≈ 1, thus, λ ≥ 4.6 according to our earlier discussion. Second, in order to save
energy, we assume that β approaches 0, that is, the waking period is sufficiently small compared with the
total scheduling period. Based on these two assumptions, we have several interesting observations.

First, for fast type I target detection, Equation (30) can be simplified to 1− e−
λ

vT
L. Therefore, in order

to obtain 99% detection probability, we have L ≥ 4.6vT
λ

. Assume λ ≈ 4.6, L ≥ vT . The result is quite
intuitive: in order to almost certainly catch an intruding target, the deployment width can be no smaller
than the product of the target velocity and the scheduling period.

Second, for a fast type II target, Equation (31) can be simplified to 1 − e−
λt
T . This means that for a

target that starts from within the system area, the probability of being caught increases exponentially.
Also, to make this probability larger than 99%, t ≈ T , given that λ is 4.6. This result is also confirmed
in our simulations.

Third, for a type II target, the detection delay can be simplified as T/λ if β approaches 0. This result
is the same as the stationary detection delay, which means that as β approaches 0, regardless of the
movement pattern of the target, the detection delay is approximately constant, determined only by the
scheduling period and node density.

1Observe that if v = 0 (this is equivalent to a stationary target), we obtain the expected delay to be ∞. This is because we do not exclude
voids in the mobile target model, and the existence of voids leads to infinitely large expected detection delay in stationary target detection.
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E. Simulation Verification

We now demonstrate that the derivation results are consistent with simulation results under perfect
circular range assumptions. In the first set of simulations of stationary targets, locations of nodes are
generated conforming to a uniform random distribution over a unit area with size 100m× 100m, without
loss of generality. The period T is chosen to be 1s. The waking points of the nodes are generated
according to a uniform distribution over [0s, 1s]. The sensing range for circular model is 10m. We choose
a point (50, 50) and generate 10, 000 sets of random target locations to run the simulations. The parameter
λ = πr2d is set to 5. We record the the number of experiments where the detection delay is smaller
than or equal to 0s, 0.05s, 0.10s, ..., 0.90s, and 0.95s. We then compare these frequencies with the
cumulative distribution functions (CDF’s) obtained in the analysis section. The simulation results are
shown in Figure 9. From the figure we can see that our analysis and simulation results match well.

In the second set of simulations, we choose various λ values (5, 7, 9 and 11) and β values (0, 0.1,
0.2, ..., 1), and run simulations to gather the average detection delays. Other settings are the same as
the previous set. We compare the average detection delays with the theoretical expected detection delays
obtained in the analysis section and plot Figure 10. The figure shows that the average delays are very
close to the analytical expected delays.

The settings for simulation verification with mobile target tracking are the same as the stationary setting,
except that now the target has a velocity. We only consider type II target detection in this section, and
other types can be similarly verified. The simulation result is shown in Figure 11. Observe that velocity
2.5m/s means a slow target, according to our threshold. In particular, its cumulative detection probability
has a relatively long tail, compared to the distribution of targets with higher velocity, implying that for
slower targets, there is a higher chance for the target to remain undetected after the scheduling cycle T .
Again, we observe that our analysis and the simulation results match well.

In the second set of simulations, we choose various λ values (5 and 10), velocity (5m/s and 50m/s),
and β values (0, 0.1, 0.2, ..., 1), and run simulations to gather the average detection delays. Other settings
are the same as in the previous set. We compare the average detection delays with the theoretical expected
detection delays obtained in the analysis section and plot figure 12. The figure shows that the average
delays are very close to the analytical expected delays.

The simulation results demonstrate the viability of using our results to predict the system performance.
For example, suppose that we have a deployment of λ = 5 and T = 1s, in order to make sure that the
expected detection delay to be no larger than 0.1s, we can calculate that β must be at least 0.14. The
simulation results confirm this calculation (Figure 10).



11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Cum ulative Distribution Function of Detection Delay (lam bda=5)

Tim e (s)

cd
f

Analytical-beta=0.2,v=2.5 m /s
Analytical-beta=0.2,v=25m /s
Analytical-beta=0.2,v=250 m /s
Experim ental-beta=0.2,v=2.5m /s
Experim ental-beta=0.2,v=25 m /s
Experim ental-beta=0.2,v=250m /s

Fig. 11. Mobile Detection Delay Distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

duty cycle(beta)

A
ve
ra
g
e
 D
e
te
ct
io
n
 D
e
la
y(
s)

Average Detection Delay for M obile Target

Theoretical Lam bda=5 v=5m /s
Theoretical Lam bda=10 v=5m /s
Theoretical Lam bda=5 v=50m /s
Theoretical Lam bda=10 v=50m /s
Experim ental Lam bda=5 v=5m /s
Experim ental Lam bda=10 v=5m /s
Experim ental Lam bda=5 v=50m /s
Experim ental Lam bda=10 v=50m /s

Fig. 12. Average Mobile Detection Delay

V. PRACTICAL APPLICATION

An example application of random duty-cycle sensor networks is a surveillance system that tracks
trespassers. A person is detected by motion sensors. Once such an event is triggered, the detecting node
sends a wakeup command to its neighbors to track the intruder. These command constitute messages
with a preamble that is longer than the duty-cycle period T . Thus, all neighbors eventually wake up and
receive the message. It alerts them to remain awake and track, possibly waking up their neighbors as well.
Subsequent detections from multiple sensor nodes eventually reconstruct the target’s path. Other types of
sensors, such as magnetic ones, can be applied to tell if the person carries a weapon.

A. Application Analysis and Sensing Irregularity

We simulate the aforementioned application and check whether simulation results match analytic
predictions. However, our discussions so far have assumed a perfectly circular sensing model. This
assumption makes the analysis tractable, and leads to closed-form results. Real sensing devices used in
this application do not have such a perfect sensing area. In experiments, we use passive infrared sensors
(PIR sensors) as motion sensors, and identify the causes of irregular sensing range. We then propose a
realistic sensing model for PIR sensors. We integrate this model into our simulations and show that the
predictions based on our analysis are quite robust under realistic sensing irregularities.

We have PIR sensors installed on the ExScal XSM motes from OSU and CrossBow [6]). At present,
four motion sensors are integrated on a single ExScal Mote to provide a 360 degree surveillance range
(each individual motion sensor can only handle a 90 degree area). We carried a series of experiments on
ExScal nodes. Their sizes are shown in Figure 13.

B. Experimental Results

In principle, PIR sensors can detect anything that generates an infrared field disturbance, such as
vehicles, persons, etc. We are interested in the ability of PIR sensors to detect walking persons, as
demanded by the application. The central metric is sensing range of PIRs. In individual tests, we let a
person walk by at different distances and angles relative to the sensing node, and measure the maximal
range of detection. All experiments are repeated in an open parking lot. We program the node with a
simple frequency analysis procedure to report events. The procedure relies on an adaptively adjusted
threshold to compare the current readings. The main purpose of this adaptive threshold is to avoid false
alarms introduced by weather changes, since this change can produce infrared noise that may trigger
the sensor. More specifically, our procedure monitors the average readings of the filtered signal within a
moving window. If the average reading observed is much smaller than the current threshold, it decreases
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Fig. 13. Illustration of ExScal Sensor Node

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

0 30 60 90 120 150 180 210 240 270 300 330 360

S
en

si
ng

 R
an

ge
(in

ch
es

)

Direction(degrees)

Node A
Node B

Fig. 14. Sensing Range with Different Directions

the threshold by taking a weighted average. On the other hand, if the average energy is close to or larger
than the threshold for a certain period, the sensor decides that the weather is noisy, and increases the
threshold. Practically we are able to filter out almost all false alarms using this technique. We note that
this technique also filters out those slight disturbances that may, in fact, be caused by the target. Thus, the
results proposed below present effective sensing range in slightly noisy environments, which are different
from precisely controlled environments.

We measured the sensing range from 24 equally divided directions. At each direction, a person moves
with different distances from the sensor node. If the fluctuation of the filtered sensor reading exceeds a
predefined noise threshold due to the nearby motion, the measured point is within the sensing range. If
the motion does not cause a fluctuation greater than the threshold, the measured point is out of the sensing
range. In the experiments we found out that the sensitivity of the sensors changes dramatically at the edge
of the sensing range. The motion can always be detected in the sensing range and the motion 10 inches
beyond the sensing range never triggers the sensors. Therefore, the precision of the range measurement
is always within 10 inches (the range itself being hundreds of inches). The experimental results for two
representative nodes are shown in Figure 14. Obviously, with four sensors, the range is far from being
circular. A more intuitive illustration is shown in Figure 15, where the sensing range in each direction is
plotted to scale.

Based on the experimental results of multiple tests, we have the following observations regarding the PIR
sensing capability. First, the sensing range of one node is not isotropic, that is, the node exhibits different
ranges in different directions. Second, the boundary of the sensing range is delineated quite sharply, with
predictably no detection when the range is exceeded by about 3-7%. Third, we can consider the variation
of ranges relatively continuous. We do observe sudden changes in the sensitivity of some nodes, but this
is very uncommon. Therefore, a model may consider connecting sensitivity ranges in different directions
using continuous curves. Forth, the sensing range distribution in different directions roughly conforms to
a Normal Distribution. This conclusion is based on statistical analysis of our experimental data using a
Kolmogorov-Smirnov Test [26]. We concluded from our experimental data set that the sensing range in
one direction can be approximated with a Normal Distribution with an expectation of 217 inches and a
standard deviation of 32 inches.

C. Realistic Sensing Model for PIR sensors

In this section, we present a realistic sensing model for PIR nodes. This model is designed to reflect
the three key observations: non-isotropic range, continuity and normality. First, the model determines
sensing ranges for a set of equally-spaced directions. Each range can either be specified based on
actual measurements or obtained from a representative distribution, for example, the normal distribution
N(217, 322). Next, sensing ranges in all other possible directions are determined based on a interpolation
method. For simplicity, we use linear interpolation to specify the boundary of the sensing area. As an



13

Fig. 15. Sensing Range of Two Nodes Fig. 16. Approximations of Realistic Range
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example, the approximation of the two representative nodes based on this model are shown in Figure 16.
Clearly, our simplified model pretty accurately reflects the fluctuations of sensing ranges in different
directions.

D. Additional Notes

Despite the fact that we proposed a realistic sensing model based on experimental results for PIR
sensor, we have simplified many other aspects of the application. For the detection part, we assumed that
individual node duty cycle is so large that the sensor warmup time is negligible. We also assumed that the
existence of targets within sensing range can be determined in sufficiently short time. For the target part,
we also do not address more complex movements of the target. We acknowledge that introduction of any
of these factors will considerably increase the complexity of the analysis. However, our analysis is still
innovative and useful in the sense that it reveals quantitative relationships between system parameters and
performance. Such understanding will considerably advance our knowledge of the underlying principles
of the design and deployment of general sensor networks.

E. Robustness of Theoretical Predictions to Realistic Sensing Model

We now incorporate the realistic sensing range model into simulations to test the robustness of the perfor-
mance predictions to sensing irregularity. We scaled the normal distributionN(217, 322) to N(10, 1.472)
to fit the simulation setting. To illustrate the difference, we also plot the error relative to theoretical
predictions. The results are shown in Figure 17 to Figure 19.

We have two observations regarding these results. First, sensing irregularity has a very small effect.
One primary reason is that even though the detection ranges do vary with different directions, the overall
degree of coverage for the area remains almost the same, approximated byλ. Therefore, the overall
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detection delay distribution is almost not affected. Second, we observe that the maximal error relative to
theoretical predictions is no more than 1.2%. As an example to show its implications, suppose that we
have a set of system parameters that guarantees that 99% of intruding targets are detected within a certain
time. Then, the actual detection rate should be no less than 97% with the existence of irregularity. Based
on this observation, we conclude that our model is quite robust to realistic sensing conditions.

At last, we acknowledge that so far, our modeling of the realistic sensing model is only concerned
with PIR sensors. Other types of sensors may well exhibit different characteristics, therefore, may have
varied effect on the detection performance. However, we envision that with a relatively large system
with considerable density, the effect of sensing irregularity will be considerably limited, leading to
improvements in the accuracy of the aforementioned results.

VI. RELATED WORK

Research on minimizing energy consumption has been one central topic in the sensor network com-
munity in recent years. Various effective techniques have been proposed, evaluated and implemented.
Protocols to schedule nodes while maintaining full coverage have been proposed by [25], [29], [22], [10].
The full sensing coverage model is very suitable for areas where continuous vigilance is required, but
consumes considerable energy. There exists a lower bound on the minimal energy consumption if the
requirement of full sensing coverage is to be fulfilled. To guarantee a longer sensor network lifetime, in
certain situations, the designer may wish to keep partial sensing coverage in exchange of longer product
lifetime.

Recent research efforts [9], [17], [11] has turned attention to the study of target tracking in the context
of partial sensing coverage. In [9], the authors proposed the metric of quality of surveillance, which is
defined as the average traveled distance of the target before it is detected. This is consistent with the
model in our paper, where the average detection delay rather than distance is used. However, the authors
didn’t address the precise determination of this metric, instead, they used an approximation model based
on coverage process theory. Their attention is mainly focused on evaluating various sleep models in
respect to the average travel length, which lead to considerably different results compared with ours. The
work in [17] considers an equivalent problem to the type II target detection of our paper. However, we are
more interested in deriving closed-form expressions for all four scenarios, whereas [17] only considers fast
targets and does not present closed-form results for detection delay or stealth distance. Another interesting
work is [11], which considered the effect of different random and coordinated scheduling approaches.
However, none of these papers derived the closed form results as in our paper, and therefore, we believe
our work is a necessary complement towards thorough understanding of detection delay performance.

VII. CONCLUSION

This paper is the first to derive closed-form formulas for the distribution and expectation of detection
delay for both stationary and mobile targets, and is also the first to propose and evaluate a realistic sensing
model for sensor networks, to the best of the authors’ knowledge. Extensive simulations are conducted and
the results show the validity of the analysis. The analytical results are of high importance for designers
of energy efficient sensor networks for monitoring and tracking applications. Designers can apply these
formulas to predict the detection performance without costly deployment and testing. Based on these
formulas, they can make decisions on key system or protocol parameters, such as the network density
and the duty cycle, according to the detection requirements of the system. Therefore, this work is a major
contribution towards a thorough understanding of the relationship between system and protocol parameters
and achievable detection performance metrics.
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