
RC23437 (W0411-156) November 17, 2004
Computer Science

IBM Research Report

Control of Weighted Fair Queueing:
Modeling, Implementation, and Experiences

Ronghua Zhang*, Sujay Parekh, Yixin Diao, Maheswaran Surendra
Tarek Abdelzaher*, John Stankovic*

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

*University of Virginia

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Control of Weighted Fair Queueing: Modeling,
Implementation, and Experiences

Ronghua Zhang
University of Virginia

rz5b@cs.virginia.edu

Sujay Parekh
IBM

sujay@us.ibm.com

Yixin Diao
IBM

diao@us.ibm.com

Maheswaran Surendra
IBM

suren@us.ibm.com

Tarek Abdelzaher
University of Virginia

zaher@cs.virginia.edu

John Stankovic
University of Virginia

stankovic@cs.virginia.edu

Abstract

Feedback control of QoS-aware servers has recently gained much popularity
due to its robustness in the face of uncertainty and modeling errors. Performance
of servers is characterized by the behavior of queues, which constitute the main
elements of the control loop. The central role of queues in the loop motivates un-
derstanding their behavior in the context of feedback control schemes. A popular
queueing policy in servers where different traffic classes must be allocated a dif-
ferent share of a common resource is weighted fair queueing (WFQ). This paper
investigates the interactions between a weighted fair queueing (WFQ) element and
a feedback controller. It is shown that the WFQ element introduces challenges that
render simple feedback control ineffective and potentially unstable. These chal-
lenges are systematically exposed, explained, and resolved. An extended feedback
control scheme for the WFQ element is subsequently developed. The scheme is
tested on an experimental prototype demonstrating higher predictability and an or-
der of magnitude improvement in responsiveness over the initial design. The results
of the paper apply in general to most systems that use a dynamic processor sharing
approach for service differentiation.

1 Introduction
Feedback control theory has recently gained much popularity as the underlying analytic
foundation for many performance control schemes in computing servers. The success of
the control-theoretic approach is attributed to the inherent robustness of simple feedback
controllers with respect to modeling errors and large fluctuations in load and resource
capacity.

The fundamental reason control theory is applicable in the domain of computing
servers is that server queues can generally be modeled by difference equations and
hence are amenable to control-theoretic analysis. The performance of servers depends
on the flow of requests through these queues as they pass through a series of stages or
tiers at which they are queued for service. Feedback controllers can be designed that
achieve desired end-to-end performance by manipulating the behavior of individual

queueing elements. It is key to understand the interplay between the feedback con-
troller and the queueing element in order to achieve desired guarantees. The collection
of results on queue control may lead to the development of a fundamental theory for
performance control in computing systems.

At present, such a theory is far from complete. The only queueing element that
received much attention in the context of feedback control loops has been the FIFO
queue. For example, the authors of [22], [16] used a FIFO queueing model to predict
queueing performance in the context of a feedback control loop. QoS-aware servers,
however, are beginning to export more sophisticated types of queues, such as priority
queues and WFQ elements.

Analyzing the behavior of WFQ elements is particularly important. This is be-
cause most multi-class feedback control schemes proposed for computing servers to
date achieve performance guarantees by logically allocating a separate fraction of the
server’s bottleneck resource to each traffic class. The extent of each share is controlled
to provide the desired performance. Unfortunately, unlike disk space and memory,
many resources (such as a disk head, a communication channel, or a CPU) cannot be
physically partitioned. Instead, the abstraction of resource shares has to be enforced
by an appropriate scheduling policy that allows different applications to believe they
own a different fraction of resource bandwidth. Among the most common scheduling
policies that achieve this end are those based on virtual clocks such as variants of WFQ.
These policies seek to approximate Generalized Processor Sharing (GPS) and thus the
resource shares allocated to different classes are determined by assigning appropriate
weights to each class.

The behavior of WFQ and similar disciplines in terms of providing service differen-
tiation and delay and jitter guarantees has been analyzed [5], [19], [3], along with flow
control strategies in networks of such WFQ elements [13], [2]. In order to use WFQ for
end-user QoS, however, the user-level QoS requirement must be used to correctly set
the per-class weights as used by the WFQ scheduler. The effects of closing a feedback
loop around WFQ queues for such QoS has not been systematically explored.

This paper is the first to systematically analyze the effects of closing a control loop
around a WFQ element for setting the per-class weights. We show that understanding
the behavior of this category of schedulers is crucial to allow feedback control loop
designers to properly acount for the side effects introduced by virtual clocks. The per-
formance of a simple feedback loop is shown to be very poor and often unstable. The
sources of performance degradation and instability are analyzed, understood, and me-
thodically eliminated leading to a general recipe for feedback control loop design of
WFQ elements. The extended design is tested on a real Web application, demonstrating
an order of magnitude imporvement in loop responsiveness over the baseline solution.

While our experimental studies are in the context of multi-class Web traffic, we be-
lieve that the issues considered are more generally applicable for any usage of WFQ
where the weights must be changed dynamically. Based on this study, we propose that
more feedback-driven adaptive algorithms for computing systems could be analyzed
using control theory in order to improve their transient performance.

The rest of the paper is organized as follows. In Section 2, we briefly describe a
straightforward feedback control solution of a WFQ scheme, based on an adaptive
accept queue controller used in [21]. In Section 3, we examine the factors affecting
the transient behavior of the WFQ element in the presence of the feedback controller,
identify control challenges and design pitfalls, and develop a sound methodology for
feedback control of WFQ systems. Remaining issues and future work are discussed in
Section 4. The related work is summarized in Section 5. The paper concludes with

Section 6.

2 A Web Application
The running example of the WFQ system in this paper is a self-managing web server in
which multiple classes of clients must receive differentiated service. As shown in Fig-
ure 1, incoming connection requests (TCP SYN packets) are first classified by a SYN
classifier. The classifier uses the IP address and port number to classify the incoming
connection requests into different service classes based on rules. Once the three-way
handshake is complete, the connection is moved from the SYN queue to the accept
queue of the listening socket. Rather than a single FIFO queue shared by all classes
of clients as in a normal Linux kernel, a separate accept queue for each class is main-
tained. Requests are subsequently dequeued by threads, which in turn get enqueued for
the CPU. Depending on the nature of such requests, either the TCP accept queues or
the CPU could become the bottleneck. In this study, we focus on the accept queue bot-
tleneck, which is often seen with a large number of HTTP requests using the HTTP/1.1
persistent connection option [15]. We expect that our main observations and results
regarding control of WFQ elements should hold for the CPU bottleneck as well.

Per Class Stat

TCP
Connection

Per Class
Accept Queue

Accept Queue

Scheduler

SYN
Classifier

Figure 1: Kernel Enhancement

We introduce a WFQ element in the system to control the rate of accepting requests
of each class (i.e., the relative dequeue rates from per-class accept queues). The vanilla
Linux kernel is modified such that each class is assigned a weight, which decides the
rate of accepting requests of that class. The question addressed in this paper is how
to assign those weights efficiently using a feedback control scheme to achieve a stable
desired per-class delay in the face of varying input load.

The algorithm used by the WFQ scheduler is start-time fair queueing (SFQ) [8].
Basically, each class is assigned a weight. When a connection enters one of the accept
queues, a start tag is associated with it. Its value depends on the weight assigned to the
class this connection belongs to. The connections are then accepted in the increasing
order of these tags. SFQ has a proven property that the rate of connections accepted
from a class is proportional to its weight. The weight assignment is performed at user-
level by the algorithm described below. To facilitate weight assignment, the kernel
maintains for each class the measured queueing delay, request arrival rate, and request
service rate.

In addition, the expected queueing delay of a class is determined by the request arrival
rateλ of that class and its share of the processing resources. As discussed above, the
share of resources given to each class is determined by its weight. For a particular
request arrival rate, a class’s queueing delay decreases when it is allocated more share
of resources. Moreover, the effect of the resource share on the queueing delay becomes
less prominent as a class receives more share of resources. When the request arrival
rate changes, the relationship between the delay and the resource share also changes.
To illustrate this, Figure 2 shows the share-delay curves corresponding to two different

arrival rates. This nonlinear relationship is easily predicted from queueing theory.
The simplest feedback-based weight adaptation algorithm continuously keeps track

of the operating point1 of each class on such a curve, and approximates the small
segment of the curve around the operating point with a line. In control theoretic terms,
this slope is the process gain. It determines the change in output (class delay) as a
function of the change in input (class weight). A weight adjustment is then calculated
for each class based on this approximated linear relationship such that under the new
weight, class output (delay) is set exactly equal to the set point. This algorithm is
invoked every adaptation interval, which is a fixed predetermined quantity. Every time
it is invoked, the algorithm executes the following steps (wherek is the invocation
number):2

Share

D
el

ay

λ1 λ2

Figure 2: Relationship between Delay and Share

1. For each classi, query the kernel for its delay during thekth interval:di,k.
2. Since the request arrival rate is not constant, the measurement of the delay could
be quite noisy. To avoid reacting to the noise and unnecessary weight adjustment,
an exponential weighted moving average (EWMA) filter is introduced to smooth the
measurement. For each classi, feed its delaydi,k into an EWMA filter. Denote the
filter output asDi,k. The expression forDi,k is:

Di,k = α×Di,k−1 + (1− α)× di,k (1)

whereDi,k−1 is the filter output for classi during thek − 1 interval, andα is a
configurable parameter controlling the smoothing effect.
3. For each class, calculate its slope as follows:

slopei =
Di,k −Di,k−1

sharei,k − sharei,k−1

wheresharei,k andsharei,k−1 are the shares for classi during thekth andk − 1th
interval, respectively.
4. For classi, calculate its share during thek + 1th interval as follows:

sharei,k+1 = sharei,k +
goali −Di,k

slopei
(2)

1The operating point of the queue for one class depends on the arrival rate and the share of resource for
that class.

2This is a simplified description. Please refer to [21] for more detail.

wheregoali is the queueing delay goal for classi.
5. Notify the kernel to adjust the shares.

2.1 Analysis
In this section, we analyze the above adaptation algorithm from the perspective of

control theory. In the analysis, we only focus on one classi, therefore omit the subscript
i in the formulas. The algorithm can be modeled as a control loop as depicted in Figure
3. Recall that for a given class, the algorithm approximates its nonlinear share-delay
relationship with piecewise linear segments. Therefore, we can model a queue around
an operating point as a linear system. In the time domain, its model is:

delay = slope× share + c

In the z-domain, the transfer function isGp = slope. The weight adjustment (equation
(2)) can be modeled by a classic integral controller, whose transfer function in the z-
domain is:

Gc = KI × z

z − 1

where

KI =
1

slope

The parameter estimator estimatesKI . And an EWMA filter (equation (1)) is equiva-
lent to a 1st order low-pass filter, whose z-domain transfer function is:

Gf = z × 1− α

z − α
(3)

If we consider the system operating around an operating point, thus ignoring the pa-
rameter estimator, the closed-loop transfer function is:

Gc ×Gp ×Gf

1 + Gc ×Gp ×Gf
=

(1− α)z2

(2− α)z2 − (1 + α)z + α
(4)

Notice thatGp×Gc = z
z−1 andslope is no longer in the closed-loop transfer function.

Thus, if the slope estimation accurately describes a linearization around the operating
point, then the closed-loop function only depends onα.

I-Controller Server Filter

Parameter

Estimator

Goal e W d D

K
I

Figure 3: Block Diagram of the Original Algorithm

3 Transient Behavior
While the above control loop should eventually converge to the right resource allo-

cation and achieve the desired delay, an experimental investigation reveals undesirable
interactions between the feedback controller and the WFQ scheduler. Control of the
WFQ scheduler is therefore given a closer look. In this section, we first study the effects
of the two key parameters of feedback control of the WFQ scheduler; theα parameter
of the EWMA filter and the adaptation interval. A departure is shown from theoretic
expectations. The departure is explained by an interaction between the scheduler and
the controller that leads to loop instability and general performance degradation. This
interaction is modeled and analysed from a control theory perspective, followed by so-
lutions that achieve good performance. We believe that the results, pitfalls, and insights
illustrated in this section are directly applicable to any implementation of a WFQ ele-
ment in which weights are dynamically adjusted using feedback control.

3.1 Experiment Setup
The experimental testbed consists of three machines connected by a 100Mbps Ether-

net. The server is a 550MHz P-III machine with 256 MB RAM and runs the patched
kernel. The server runs Apache web server 1.3.19, and the MaxClient parameter of
Apache is set to 300 processes. Each client machine has a 550 MHz P-III CPU and
256 MB RAM, and runs Linux 2.4.7. SURGE [1] is used to generate the HTTP/1.1
workload. The requested content is dynamically generated by a CGI script at the server
side. The CGI script first sleeps for some time before sending back the reply. The sleep
time follows a uniform distribution U(0, 50ms). It simulates the time it takes to query
the database or application server. The purpose is to stress the accept queue without
loading the CPU.

We modify the SURGE so that the client number simulated can be dynamically
changed. Throughout the experiment, two classes of clients are simulated. Originally,
each class has 100 clients. During 100s to 200s, the client number of class 0 increases
from 100 to 300, and remains at 300 for the rest of the experiment. The client number of
class 1 does not change. The connection rates of the two classes are plotted in Figure 4.
This workload simulates the abrupt traffic increase. The delay goals for the two classes
are 1s and 20s, respectively.

3.2 Parameter of the EWMA filter
As we have seen in Section 2.1, the EWMA filter is equivalent to a 1st order low pass
filter. Control theory tells us that 1st order low pass filters can introduce lags, thus
slowing down the response of a system. The degree of the slowdown depends on the
value ofα. From Equation 3, we see that the filter adds a pole to the system atα, thus
a smaller value ofα will result in a faster system.

The problem we face is thatα cannot be arbitrarily small, since a smallerα also lets
more noise enter the system. The proper value should therefore be chosen based on
the noise level, which is related to the variability in system load. System load in most
Internet servers is highly variable, necessitating a fairly largeα, and thereby resulting
in a slower control system response.

To overcome this problem, we use a separate filter for the feedback and the param-
eter estimation. The filter for the feedback path has a smallerα: 0.3, to improve the
responsiveness. The filter for the parameter estimation uses a largerα: 0.5, to reject
noise. Figure 5 shows the new structure.

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600

C
on

n/
s

Time(s)

Class 0
Class 1

Figure 4: Connection Rate of Two Classes

I-Controller Server

Parameter

Estimator

Goal e W d

K
I

Filter

Filter

Figure 5: Separate Filter for the Feedback and Parameter Estimation

We then set the adaptation interval to 30s, and perform the experiment using the old
and the new filter structure respectively. The behavior of the old and new system is
plotted in Figure 6(a) and Figure 6(b) respectively. Comparing the two, the new system
settles down much faster than the old one. The settling time is reduced from 2000s to
500s.

3.3 Adaptation Interval
Another key parameters of the algorithm is the adaptation interval, which in control
terminology is called the sampling period. As we have seen in the previous section,
the settling time depends on the EWMA parameterα. In particular,α determines the
number of sampling periods it takes for the system to settle. Expressed in absolute time
units, the settling time is given by the number of periodsS multiplied by the length of
the period. Hence, given a fixedα, a smaller sampling period should, in principle, lead
to a faster absolute settling time. We conduct an experiment to verify this claim.

Let us set the sampling period to a large value of 200s. As expected, this conservative
setting results in a very slow transient response. As shown in Figure 7, it takes the
system almost 1 hour (3500s) to settle down.

We now reduce the sampling period in the experiments. We are interested in two
questions, namely, (1) Is the change of the settling time proportional to the change
of the adaptation interval as postulated from theoretical analysis? For example, if the
adaptation interval is reduced by half, will the settling time also be reduced by half?
(2) What happens when the adaptation interval is very short? Does it introduce any

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

C
la

ss
 0

 D
el

ay
(s

)

C
la

ss
 1

 D
el

ay
(s

)

Time(s)

Class 0
Class 1

(a)Adaptation interval 30s with single filter

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

C
la

ss
 0

 D
el

ay
(s

)

C
la

ss
 1

 D
el

ay
(s

)

Time(s)

Class 0
Class 1

(b)Adaptation interval 30s with separate filters

Figure 6: Filter effect

side effects to the system? In other words, is there any lower bound on the adaptation
interval?

We have already seen the result of using an adaptation interval of 30s in Figure 6(a).
Not surprisingly, the smaller adaptation interval does improve the performance: the
settling time is reduced to 2000s. But, this improvement is relatively small compared
with the change of the adaptation interval. The adaptation interval is reduced to 1/6 of
the original value (from 200s to 30s), but the settling time is only reduced by half.

Then, we repeat the experiment using a more aggressive adaptation interval: 5s. This
time the system enters an oscillatory state and cannot settle down as shown in Figure 8.
The experiment is repeated using the multi-filter structure. The system is still unstable.

Two interesting observations can be made from these experiment results: (1) Using
a smaller adaptation interval does improve the system’s responsiveness. But the im-
provement is limited. (2) There does exist some lower bound of the adaptation interval.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

35

40

45

C
la

ss
 0

 D
el

ay
(s

)

C
la

ss
 1

 D
el

ay
(s

)

Time(s)

Class 0
Class 1

Figure 7: Adaptation Interval 200s with single filter

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

C
la

ss
 0

 D
el

ay
(s

)

C
la

ss
 1

 D
el

ay
(s

)

Time(s)

Class 0
Class 1

Figure 8: Adaptation Interval 5s with single filter

When the interval is too small, the system can become unstable. Both of these observa-
tions are at odds with Equation (4), which implies other hidden factors are affecting the
system’s stability.

3.4 Deadtime Effect
According to control theory, the stability of a system depends on the pole positions

of its closed loop transfer function. Observe that in equation (4), onlyα appears in the
denominator, which means that onlyα can affect the stability of the system. The fact
that a small adaptation interval can lead to instability even ifα is not changed implies
that the system’s model (i.e., the transfer function) changes in the case of a small adap-
tation interval. The closed loop system consists of four parts: an accept queue including
its scheduler, an EWMA filter, an integral controller, and a parameter estimator. The
behavior of the EWMA filer and the integral controller is well understood, therefore,

we turn our attention to the accept queue, especially the scheduler.
The accept queue scheduler implements the SFQ algorithm. Recall that the SFQ

algorithm schedules connections according to the values of the start tags. Since the
tag is assigned when a connection first enters the queue and its value is decided by
the weight of the class this connection belongs to at that moment, any further weight
changes has no influence over the connections already in the queues. In other words,
the new weight change will not take effect until the connections currently in the queues
are all accepted. We call the time it takes the system to drain the backlogdeadtime.

The existence of deadtime is exposed by a small experiment. The weights are initially
0.9 for class 0 and 0.1 for class 1. After the system stabilizes, at time 100s, the weights
for both classes are changed to 0.5. The weight and delay for class 0 are plotted in
Figure 9. Since the weight for class 0 drops, the delay experienced by class 0 increases.
But the increase does not happen immediately after the weight is changed. Rather, it
happens more than 10s after the weight is adjusted. This 10s delay is the deadtime.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 50 100 150 200
 0

 0.2

 0.4

 0.6

 0.8

 1

D
el

ay
(s

)

W
ei

gh
t

Time(s)

Delay
Weight

Figure 9: Evidence of Deadtime

Under normal situation, the deadtime is very short, thus does not become a problem.
When the workload is high, the deadtime can be as long as several seconds as shown
in the above small example. If the adaptation interval is comparable to the deadtime,
the effect of the deadtime on the behavior of the system can no longer be ignored, thus
must be taken into account.

Simulation is used to show the effect of the deadtime on the system. The same
settings as those of the simulation in section 3.2 are used, andα is set to 0.3. The only
difference is that now the server model is− 1

16 × 1
z2 . The extra term1

z2 represents a
deadtime of two adaptation intervals. The response of the system toward a step input
is shown in Figure 10. The behavior clearly indicates an unstable state. According
to control theory, a system is stable if its poles are all within the unit circle. Figure
11 compares the poles of the system with and without the extra1

z2 term. When the
extra term is added, the poles are moved from within the unit circle, which is the stable
region, to the boundary of the unit circle, which is the unstable region.

How the deadtime gives birth to the oscillation can be intuitively explained as fol-
lows. Suppose that now the delay of class 0 is higher than its goal. The adaptation
algorithm increases the weight for class 0. After 5 seconds, the adaptation algorithm

0 500 1000 1500
−0.5

0

0.5

1

1.5

2

2.5

Figure 10: Simulate the Effect of Deadtime

0

−1 1

−1

0.5−0.5

−0.5

0

With 1/z^2

Without 1/z^2
1

0.5

Figure 11: Pole Positions of Two Systems

expects to observe immediate result due to this weight increase, i.e., reduced queueing
delay, and makes further adjustment based on the observation. Because of the deadtime,
however, this expected delay reduction does not show up after 5 seconds. Therefore,
the adaptation algorithm has to further increase the weight for class 0. This keeps hap-
pening until the queueing delay for class 0 drops. But by then, it is too late. All the
weight increases applied have already had a cumulative effect on the system, and the
weight for class 0 is much more than needed. The direct result is that class 1 begins
to suffer. Then the same process happens to class 1 again. This essentially forces the
system into an oscillatory state.

There are basically three ways to fix the problem. (1) Fix the implementation of
SFQ such that the new weight change updates the start tags of those requests already in
the queues. (2) Enrich the server model to take into account the deadtime. (3) Adopt
variable adaptation intervals so that the deadtime becomes invisible to the adaptation al-
gorithm. The first option is inefficient because it implies changing the logical timestamp
of all enqueued requests at every sampling time, which introduces high overhead. The
second option is viable, but requires more sophisticated control derived using more ad-
vanced results in control theory that pertain to systems with variable delay. We choose
the third option due to its simplicity. It provides a straightforward solution that is able
to maintain the simplicity of the feedback controller while achieving the needed perfor-
mance.

To support variable adaptation intervals, one more per class measurement has to be
maintained by the kernel: the accept queue length. When the adaptation algorithm
changes the weight, it also records the current length of the queue for each class, i.e.,
the backlog size. After that, every second the adaptation algorithm queries the kernel
for the number of requests accepted. It keeps querying until the backlog of all the
queues are cleared, which means the end of the deadtime. Then it waits for the desired
adaptation interval before it changes the weight again. Since the deadtime is not a fixed
value, the actual adaptation interval is also variable: the deadtime plus the desired fixed
adaptation interval, as shown in Figure 12.

Weight Adjust Weight Adjust Weight Adjust

Deadtime 5s Deadtime 5s

Figure 12: Variable Adaptation Interval

We set the desired adaptation interval to 5s, and repeat the experiment using this
new algorithm. The response of the system is plotted in Figure 13. The most obvious
improvement over Figure 8 is that the system is stable in this case. Compared with the
case of 30s adaptation interval (Figure 6(b)), the settling time is reduced to 200s from
350s. This improvement is not as drastic as when the adaptation interval is changed
to 30s from 200s. The reason is that the deadtime now becomes a major contributor
to the settling time, and there is no way to reduce the deadtime unless we change the
implementation of the scheduler. The latter option, however, may invalidate the set
of convenience properties we know about the WFQ scheme, which represent the main
advantages of that policy.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 100 200 300 400 500 600
0

5

10

15

20

25

C
la

ss
 0

 D
el

ay
(s

)

C
la

ss
 1

 D
el

ay
(s

)

Time(s)

Class 0
Class 1

Figure 13: Variable Adaptation Interval with separate filters

4 Discussion and Future Work
The filter parameterα has dual effects on the system: smoothing the measurement

and introducing delay into the system. Bigger value ofα leads to a stronger smoothing

effect and a longer delay. In the experiments, we pick the value offline based on the
workload characteristics. In a more realistic scenario where the workload characteris-
tics change quite often, the value has to be decided online using, for example, the fuzzy
estimation approach outlined in [13].

SFQ is not the only scheduling algorithm that has the deadtime problem. WFQ [5]
(also known as Packetized Generalized Processor Sharing (PGPS) [19]), FQS [9], Self
Clocked Fair Queueing (SCFQ) [7], andWF 2Q [3] all work in a similar way as SFQ,
therefore they all have the similar problem. We have proposed three solutions to over-
come the deadtime. We choose the third one due to its simplicity. However, a more
thorough solution is to change the way SFQ is implemented. Basically, when the weight
assignment is changed, the tags associated with those connections already in the queues
need to be recalculated. This re-calculation of the tags should preserve the property that
the connection accept rate of one class is proportional to the weight of that class. One
negative effect is that extra CPU cycles are needed for the re-calculation. We will im-
plement this solution and evaluate the overhead it incurs.

In this paper, we only focus on two parameters’ effects on the transient behavior
of the original algorithm. The algorithm itself also worths some investigation. For
example, the weight adjustment is essentially an integral controller. Integral controller
is good because it can eliminate steady-state error, however, it can also result in worse
transient behavior. We plan to implement other types of controllers, and compare their
performance.

5 Related Work
Many researchers have successfully provided solutions for QoS guarantees using

feedback control. For example, a differentiated web cache service is presented in [18],
[17]. The service is capable of providing different hit ratios for different classes of
contents. In [20], control theory is used to control the length of the RPC queue in a
Lotus Notes server. Control theory is applied in [15] to provide delay guarantee in
web servers. The number of processes servicing each class is dynamically adjusted to
achieve desired delay goal.

An architecture is proposed in [4] that maintains separate service queues for differ-
ent classes of clients. While it is capable of providing preferential services to premium
clients, it cannot provide any guarantee on the service. A scheme named Latency-
targeted Multiclass Admission Control(LMAC) is developed in [12]. No interaction
among low level system resources are modeled. Instead, system resources are ab-
stracted into high-level virtual server. The algorithm uses measurements of requests
and service latencies to control each class’s quality of service.

In web based business applications, workload of different nature can be sent to a web
server. The change in workload nature and volume can cause the bottleneck resource
to shift. An adaptive QoS framework is introduced in [21] to provide system-wide
QoS guarantee even when the bottleneck resource shifts. This is achieved by managing
multiple resources simultaneously. Our work only focus on one part of the framework:
the accept queue management.

A similar methodology is applied in [10] to the analysis and design of Active Queue
Management control systems using random early detection (RED) scheme. The authors
first linearize a previously developed nonlinear dynamic model of TCP. Based on this
linearized model, the stability condition of the system is discussed in terms of network
parameters such as link capacity and load. The authors then design two alternative
AQM controllers, both of which respond faster that the RED controller [11].

In the context of GPS queues with a dual leaky-bucket rate control, there exists pre-
vious work in determining the per-class weights. [6] analyzed the two-class case, and
it was generalized to the multi-class case in [14]. These approaches aim to achieve
QoS guarantees in a statistical sense. However, they assume knowledge of the service
capacity (which in general may not be known) as well as the leaky-bucket traffic as-
sumption and a more detailed QoS specification involving not only delay bound but
also loss probabilities. Moreover, the dynamics of the actual scheduling mechanism are
not taken into account, which may affect the applicability of the methods.

6 Conclusion
In this paper, we examine the transient behavior of an adaptive system for QoS guar-

antees for web servers. This system is essentially a WFQ scheduler where the weights
can change dynamically. We show that it is important to properly configure its two im-
portant parameters so that the system exhibits good responsiveness; we have improved
by an order of magnitude over the previously published result for such a mechanism.
We also uncover how a flawed implementation of the SFQ algorithm can damage the
system stability, and propose a solution. Basic insights from control theory are used to
explain the results of the experiments. This paper is intended as a case study. We believe
that other feedback based adaptive algorithms could also be analyzed and improved in
a similar fashion. Further, the results here could be applied to tune other applications
where an adaptive WFQ type algorithm is used.

References
[1] P. Barford and M. Crovella. Generating representative web workloads for network and server perfor-

mance evaluation. InMeasurement and Modeling of Computer Systems, pages 151–160, 1998.
[2] L. Benmohamed and S. M. Meerkov. Feedback control of congestion in packet switching networks: the

case of a single congested node.IEEE Transactions on Networking, 1(6):693–708, Dec. 1993.
[3] J. C. R. Bennett and H. Zhang.WF2Q : Worst-case fair weighted fair queueing. InProceedings of

IEEE INFOCOM, 1996.
[4] N. Bhatti and R. Friedrich. Web server support for tiered services.IEEE Network, pages 64–71,

September 1999.
[5] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair-queueing algorithm. InACM

SIGCOMM, 1989.
[6] A. Elwalid and D. Mitra. Design of generalized processor sharing schedulers which statistically multi-

plex heterogeneous QoS classes. InProceedings of the IEEE Conference on Computer Communications
(INFOCOM’99), pages 1220–1230, New York, NY, USA, Mar. 1999.

[7] S. Golestani. A self-clocked fair queueing scheme for high speed applications. InProceedings of IEEE
INFOCOM, pages 636 – 646, 1994.

[8] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queuing: A scheduling algorithm for integrated
servicespacket switching networks. InACM SIGCOMM, 1996.

[9] A. G. Greenberg and N. Madras. How fair is fair queuing?Journal of the ACM, 39(3):568 – 598, July
1992.

[10] C. V. Hollot, V. Misra, D. F. Towsley, and W. Gong. A control theoretic analysis of RED. InProceedings
of IEEE INFOCOM, pages 1510–1519, 2001.

[11] C. V. Hollot, V. Misra, D. F. Towsley, and W. Gong. On designing improved controllers for AQM
routers supporting TCP flows. InProceedings of IEEE INFOCOM, pages 1726–1734, 2001.

[12] V. Kanodia and E. Knightly. Multi-class latency-bounded web services. Inthe 8th International Work-
shop on Quality of Service, 2000.

[13] S. Keshav. A control-theoretic approach to flow control. InACM SIGCOMM, 1991.
[14] K. Kumaran, G. Margrave, D. Mitra, and K. R. Stanley. Novel techniques for design and control

of generalized processor sharing schedulers for multiple QoS classes. InProceedings of the IEEE
Conference on Computer Communications (INFOCOM), pages 932–941, Tel Aviv, Israel, Mar. 26–30
2000.

[15] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feedback control architecture and design
methodology for service delay guarantees in web servers. InIEEE Real-Time Technology and Applica-
tions Symposium, June 2001.

[16] Y. Lu, T. Abdelzaher, C. Lu, L. Sha, and X. Liu. Feedback control with queueing-theoretic prediction
for relative delay. InIEEE Real-Time and Embedded Technology and Applications Symposium, 2003.

[17] Y. Lu, T. Abdelzaher, C. Lu, and G. Tao. An adaptive control framework for qos guarantees and its
application to differentiated caching services. Inthe 10th International Workshop on Quality of Service,
May 2002.

[18] Y. Lu, A. Saxena, and T. F. Abdelzaher. Differentiated caching services: A control-theoretical approach.
In International Conference on Distributed Computing Systems, April 2001.

[19] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow control in integrated
services networks: the single-node case.IEEE/ACM Transactions on Networking (TON), 1(3), June
1993.

[20] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus. Using control theory to achieve
service level objectives in performance management.Real Time System Journal, 23(1-2), 2002.

[21] P. Pradhan, R. Tewari, S. Sahu, A. Chandra, and P. Shenoy. An observation-based approach towards
self-managing web servers. Inthe Tenth International Workshop on Quality of Service, 2002.

[22] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher. Queuing model based network server performance control.
In IEEE Real-Time Systems Symposium, December 2002.

