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Abstract
Heating, ventilation and cooling (HVAC) is the largest

source of residential energy consumption. In this paper, we
demonstrate how to use cheap and simple sensing technol-
ogy to automatically sense occupancy and sleep patterns in a
home, and how to use these patterns to save energy by auto-
matically turning off the home’s HVAC system. We call this
approach the smart thermostat. We evaluate this approach by
deploying sensors in 8 homes and comparing the expected
energy usage of our algorithm against existing approaches.
We demonstrate that our approach will achieve a 28% en-
ergy saving on average, at a cost of approximately $25 in
sensors. In comparison, a commercially-available baseline
approach that uses similar sensors saves only 6.8% energy
on average, and actually increases energy consumption in 4
of the 8 households.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-

tems]: Real-time and Embedded Systems; H.1.2 [Models
and Principles]: User/Machine Systems—Human Informa-
tion Processing

General Terms
Design, Experimentation, Economics, Human Factors

Keywords
Building Energy, HomeMonitoring, Programmable Ther-

mostats, Wireless Sensor Networks

1 Introduction
Heating, ventilation and cooling (HVAC) is the single

largest contributor to a home’s energy bills and carbon emis-
sions, accounting for 43% of residential energy consumption
in the U.S. and 61% in Canada and the U.K., which have
colder climates [1, 2, 3]. Studies have shown that 20-30% of
this energy could be saved by turning off the HVAC system
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when residents are sleeping or away [4]. These savings, how-
ever, have been difficult to realize: typical residents will not
manually adjust the thermostat several times a day, and pro-
grammable thermostats are too difficult for most people to
use effectively. In fact, recent studies have found that house-
holds with programmable thermostats actually have higher
energy consumption on average than those with manual con-
trols because users program them incorrectly or disable them
altogether [5, 6]. As a result, the EPA recently suspended the
Energy Star certification program for all programmable ther-
mostats, effective December 31, 2009 [7].

An important obstacle to energy conservation is the weak
financial incentive for individual homeowners. A 20-30%
reduction in HVAC energy would translate to a savings
of about $15 per month for the average household in the
U.S. [8]. For many people, this small monetary saving does
not justify the difficulties of optimizing HVAC operation on
a daily basis. At the national scale, however, these same
savings translate to over 100 billion kWh at a cost of ap-
proximately $15 billion annually, and would prevent approx-
imately 1.12 billion tons of pollutants from being released
into the air each year [9, 10]. It is a classic tragedy of the
commons [11]. To address this situation, a new solution must
be created that “just works” and saves energy without requir-
ing daily thought or action by household residents.

In this paper, we propose a solution called the smart ther-
mostat that uses occupancy sensors to automatically turn off
the HVAC system when the occupants are sleeping or away
from home. Our approach uses wireless motion sensors and
door sensors, which are inexpensive and easy to install; they
cost about $5 each off the shelf and can be installed in min-
utes using double-sided tape. The smart thermostat uses
these sensors to infer when occupants are away, active, or
sleeping and turns the HVAC system off as much as possible
without sacrificing occupant comfort.

The first main challenge of this approach is to quickly
and reliably determine when occupants leave the home or
go to sleep. Motion sensors are notoriously poor occupancy
sensors and have long been a source of frustration for users
of occupancy-based lighting systems, which often turn the
lights off when a room is still occupied. For the smart ther-
mostat, these mistakes would lead to more than just user frus-
tration: frequently turning off and on the HVAC system can
cause uncomfortable temperature swings, shorten the life-
time of the equipment, and even cause energy waste due to
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(a) Programmable Thermostat Operation
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(b) Reactive Thermostat Operation

Figure 1. Both programmable and reactive thermostats cause substantial energy waste and discomfort.

frequent equipment cycling. Furthermore, a longer time-out
period is not an adequate solution because it would waste
energy by conditioning unoccupied spaces; the smart ther-
mostat requires occupancy monitoring that is both quick and
reliable. To address this problem, we use a novel algorithm
that analyzes patterns in the sensor data to quickly recognize
leave and sleep events, allowing the system to respond within
minutes without increasing false detection rates.

The second main challenge of this aproach is to decide
when to turn the HVAC system back on. Preheating the
house could waste energy if the system is activated too early.
On the other hand, heating only in response to occupant ar-
rival could also waste energy because, at that point, the house
must be heated very quickly; many multi-stage HVAC sys-
tems have a highly efficient heat pump that can be used for
slowly preheating, but a lower efficiency furnace or electric
heating coils must be used to heat the house quickly. Since
the smart thermostat cannot predict exactly when occupants
will arrive, it is difficult to decide which approach will be
more efficient on any given day. Instead, the system uses a
hybrid approach that minimizes the long-term expected en-
ergy usage based on the occupancy patterns of the house:
it slowly preheats the house with high efficiency equipment
at a time τ and, if the occupants return before that time, it
quickly responds by heating the home with the lower effi-
ciency equipment. The time τ is chosen based on the equip-
ment efficiencies and the historical distribution of occupant
arrivals, balancing the expected costs of preheating too early
and preheating too late.

To evaluate our approach, we deploy sensors in 8 homes
using X10 motion and door sensors that cost about $5
each [12] and can be easily installed with double-sided tape.
We also collect empirical measurements of the temperature
response and energy consumption of a home with a typi-
cal heating system. We construct a simulation model of this
home using the EnergyPlus home energy simulation frame-
work [13] and validate that the energy predictions match our
empirical energy measurements of the home. Then, using
this model, we calculate the energy cost of heating each of
these 8 households using the smart thermostat algorithm and

demonstrate a 28% energy saving using 12-20 sensors per
home, for a total cost of less than $100. Our analysis shows
that similar results would be achieved with as few as 3-5 sen-
sors per home, a cost of about $25. For comparison, we use
the same home model and weather traces to also evaluate a
reactive algorithm that turns the system on in response to
motion sensor or door sensor values, and turns the system
off in response to a period of inactivity. This approach is
commonly used by occupancy-based lighting systems and
has recently been adopted by off-the-shelf thermostats that
claim to save energy by responding to occupancy [14, 15].
However, our studies show that without our sensor analysis
and control algorithms, this approach only achieves a 6.8%
energy saving on average in these 8 homes. In fact, it ac-
tually increases energy usage in four of the homes due to
its inability to respond quickly to occupants, as explained in
Section 2.

2 Background and Related Work
Programmable thermostats have been a pillar of energy

conservation programs since shortly after their invention in
1906, over 100 years ago. The basic idea is to control the
HVAC equipment based on a setback schedule: the house
is conditioned to a setpoint temperature when the occupants
are typically active and floats to a more energy-efficient set-
back temperature when the occupants are typically away or
asleep. The notion that energy could be saved in this man-
ner has been part of the U.S. collective consciousness since
President Carter famously donned a cardigan and turned the
temperature of the White House down to 55°F at night due
to the energy crisis of the 1970s. However, this approach
wastes energy in several ways, as illustrated by Figure 1(a).
First, the occupants leave the home shortly after 9 AM, but
the system wastes energy because it is scheduled to continue
heating the home until 10 AM (left side). Second, the set-
back temperature is well above the safety limit for the house,
causing energy consumption even while the house is vacant
(center). This type of shallow setback is typically used to
reduce the risk of comfort loss, in case the building becomes
occupied at that time. Third, the occupants become uncom-
fortable when they return shortly after 1 PM because the sys-
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Figure 2. The goal of the smart thermostat is to automatically turn off the HVAC equipment as soon as the occupants
leave, use a deep setback temperature while they are gone, and preheat immediately before the occupants return.

tem is not scheduled to heat the house until much later. On
the surface, this last problem appears to be only a comfort
issue, but is in fact an important cause of energy waste: the
static setback schedules used by programmable thermostats
cannot capture the highly dynamic occupancy patterns of
most homes and will inevitably cause some loss of comfort.
This risk of comfort loss causes people to reduce their use
of setback schedules, or stop using them altogether. Over
50% of households that have programmable thermostats are
reported to not use setback periods at night or during the
day [5]. In contrast, households with the simpler dial-type
thermostats can easily adjust temperature settings before go-
ing to sleep or leaving the house and, as a result, actually
save more energy on average than users with programmable
thermostats [5, 6]. In the preliminary work, two of the au-
thors designed and evaluated the self-programming thermo-
stat to fix this problem by automatically choosing the optimal
setback schedule based on historical occupancy data [16].
However, that system still produces a static schedule and,
since occupancy patterns change every day, any static sched-
ule must sacrifice either energy or comfort. In this paper, we
use real-time sensor data to dynamically control the HVAC
system as the occupancy status of the house changes.

An alternative to the programmable thermostat is the re-
active thermostat, which uses motion sensors, door sensors,
or card key access systems to turn the HVAC equipment on
and off based on occupancy [17, 15, 18, 19]. However, our
preliminary studies found that reactive thermostats save less
energy than programmable thermostats in residential build-
ings, and in 4 out of 8 households actually increase en-
ergy usage by up to 10% [16]. We identified three sources
of energy waste, which are illustrated by Figure 1(b), col-
lected from a home using the BAYweb brand reactive ther-
mostat [14] with five motion and door sensors. First, the
occupants leave the house at about 9:30 AM, but the system
waits until 10:30 AM to stop heating (left side). This long
delay is used to reduce the risk of turning off the heat while
the building is still occupied (a common problem with light-
ing systems that use motion sensors). Second, even when the
system is fairly confident that the building is unoccupied, it
still wastes energy by maintaining a temperature that is well
above the building safety level (middle), in order to reduce
the building response time once the occupants return. Third,
when the occupants do arrive shortly after 1 PM, the system
must waste energy by using an inefficient stage of heating:
it first responds with an energy-efficient heat pump, but after
detecting that the temperature is rising too slowly it switches
to a very inefficient auxiliary heater to raise the temperature

more quickly. This same phenomenon has been observed
in previous studies of programmable thermostats [20, 21].
In summary, the energy saving potential of reactive ther-
mostats is limited by their inability to respond quickly to
building occupants. The smart thermostat presented in this
paper addresses this limitation by developing new algorithms
to quickly turn off the system when not needed, and to turn
on the system at a time that minimizes long-term expected
energy consumption based on occupancy patterns.

3 The Smart Thermostat
The smart thermostat uses occupancy sensors to save en-

ergy by automatically turning off the HVAC when occupants
are sleeping or away. The system uses cheap, simple mo-
tion and door sensors installed throughout the home (Sec-
tion 3.1). Based on these sensors, the system employs three
energy saving techniques, as illustrated in Figure 2. First,
the fast reaction algorithm uses a probabilistic model to pro-
cess the sensor data and quickly estimate whether occupants
are active, sleeping, or away (Section 3.2). This algorithm
can typically respond within minutes of the occupants leav-
ing the house, without introducing false vacancy detections.
Second, the system combines historical occupancy patterns
with on-line sensor data to decide whether to preheat the
home or to heat after the occupants arrive (Section 3.3). Fi-
nally, the system saves additional energy by allowing the
temperature to drift further from the setpoint temperature
when it is confident that the home is unoccupied. We call this
a deep setback (Section 3.4). These three techniques allow
the system to automatically save energy without sacrificing
occupant comfort.

3.1 Instrumenting the Home
In order to respond to the residents, the smart thermostat

requires two types of sensors to identify when occupants are
in the home and when they are sleeping: passive infrared
(PIR) motion sensors in rooms and magnetic reed switches
on entryways. PIR sensors and magnetic reed switches are
cheap and easy to install: we deploy off-the-shelf wireless
X10 sensors [12] as shown in Figure 3 that can be purchased
for approximately $5 each and easily installed by attaching
them to the wall or door using double-sided tape. In con-
trast to other smart home applications such as medical mon-
itoring and security, the domain of energy conservation can
tolerate a small loss in accuracy in favor of cost and ease of
use. Therefore, the smart thermostat does not require cam-
eras or wearable tags that may be considered intrusive to the
user [22, 23] or more sophisticated sensing systems used for
fine-grained tracking and activity recognition [24, 25, 26].

For our experiments, we deployed more sensors than we



(a) Motion Sensor (b) Door Sensor

Figure 3. The smart thermostat uses motion sensors (left)
and contact switches on doors (right).

thought necessary in order to analyze the sensitivity of our
approach to the number of sensors. We installed at least
one motion sensor in every room and a magnetic reed switch
on exterior doorway to the home. This type of deployment
would require less than 20 minutes and, at $5 per sensor,
would cost less than $100 for most homes and about $50 for
an average home with 9 rooms and one main entrance. This
is similar to the cost of purchasing and installing a typical
programmable thermostat, and approximately 35% of homes
in the U.S. already contain a similar set of sensors as part of
a home security system [27]. Furthermore, our analysis in
Section 6.3.1 shows that only 3-5 strategically placed sen-
sors are actually needed in each home to achieve energy sav-
ings. An alternative to motion sensors would be to sense
the home’s electrical and mechanical systems to detect oc-
cupancy [28, 29, 30], although the effect of these systems
on cost and the ability to quickly and reliably detect home
occupancy has not been demonstrated.

3.2 Turning the HVAC System Off
One key challenge of the smart thermostat is to decide

when the occupants have left the home so that it can turn
off the HVAC system. Being too aggressive can cause the
equipment to shut off too early, causing occupant discomfort,
wasting energy due to rapid equipment cycling, and shorten-
ing the life of the equipment. On the other hand, being too
conservative can waste energy by conditioning unoccupied
spaces. In order to achieve a fine balance, the smart ther-
mostat uses a Hidden Markov Model (HMM) to estimate
the probability of the home being in each of three states:
(i) Away when the home is unoccupied, (ii) Active when the
home is occupied and at least one resident is awake, and (iii)
Sleep when all the residents in the home are sleeping. Once
the system detects a state transition with high probability,
it responds by switching the temperature setpoint appropri-
ately.

The HMM is depicted in Figure 4(b). The hidden variable
(yt) is a distribution over the home state: Away, Active and
Sleep and the HMM transitions to a new state every five min-
utes. The observed variables xt are a vector of three features
of the sensor data: (i) the time of day at 4-hour granularity,
(ii) the total number of sensor firings in the time interval dT ,
and (iii) binary features to indicate presence of front door,
bedroom, bathroom, kitchen, and living room sensor firings
in the time interval dT . The first feature helps the HMM use
historical occupancy at each time of day to help estimate cur-
rent occupancy. The second feature simply indicates whether
the occupants are highly active. The third feature helps de-

thresholdTlast  
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thresholdTlast  

(a) Reactive State Machine

1 ty

1 tx tx 1!tx

ty 1!ty
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Figure 4. Reactive thermostats use a state machine to
switch between states based on Tlast , the time elapsed
since the last sensor firing. The smart thermostat uses
a HMM to switch between states based on a probabilistic
model of state transitions and sensor data.

tect whether the occupants have opened or closed a door re-
cently, and also helps filter out motion sensors with high false
positives, e.g. those that are near a window.

To train the HMM using a data trace from a home with
known occupancy states, these features are first calculated
every five minutes. The Markov state transition probabilities
P(yt |yt−1) and the emission probabilities for the observed
sensor features P(xt |yt) are represented using a discrete con-
ditional probability table and are both calculated using fre-
quency counting. However, frequency counting results in
very low probabilities for several values of feature (ii) be-
cause the total number of firings per time unit has a larger
domain than features (i) and (iii). Therefore, we build a gen-
erative Gaussian model for P(xt |yt) to smooth the probability
distribution for feature (ii). Additionally, we explicitly dis-
able sleep states in the morning after contiguous hours of
sleep states are detected during the night. This effectively
encodes that a person has recently woken up and is unlikely
to sleep again, which improves the accuracy of our HMM by
correctly classifying idle periods after a person has woken
up as away times.

3.3 Turning the HVAC System On
Since the occupant arrival times are not known, a key

challenge of the smart thermostat is to decide whether and
when to preheat the house. Preheating too early can waste
energy by maintaining the setpoint for too long, while pre-
heating too late can waste energy by increasing the chance
of needing to react to occupant arrivals with an inefficient
heating stage, as described in Section 2. In order to manage
this delicate trade-off, the smart thermostat chooses the op-
timal preheat time τ that minimizes the long-term expected
energy usage. It slowly preheats the house with high effi-
ciency equipment at a time τ and, if the occupants return
before that time, it uses higher capacity but lower efficiency
equipment in order to quickly heat the home. Two steps are
required to derive the value of τ: (i) characterize the capacity
and efficiency for each stage of the home’s HVAC system,
and (ii) analyze historical occupancy patterns of the home.

We empirically measure the efficiency of a three-stage
HVAC system that includes a 2-stage heat pump and a third
stage electric heater in the house shown in Figure 9. For
each stage, we preform four experiments by turning off the
system, which allows the house to cool down to below 65°F,
and then heating the house to a target temperature. By cor-
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Figure 5. Energy efficiency and lag time vary among the
multiple stages of HVAC. The smart thermostat uses the
most energy efficient stage for preheating in order to re-
duce the reaction energy waste.

relating the thermostat operation logs and power measure-
ments, we calculate the average energy used and the time
taken by each stage to raise the temperature by 1°F on aver-
age, as depicted in Figure 5. The results show that Stage 2 is
the most energy efficient stage, but has a long response time;
at 15 minutes per degree, this stage would require 2 hours to
recover from a typical 8 degree setback temperature, which
would be too long for an occupied building. On the other
hand, Stage 3 has the fastest response time but a very high
energy cost. Note that for this equipment Stage 1 uses the
same compressor and fan as Stage 2, but operates at a lower
power level and speed. It is less efficient but more effective
at maintaining a constant temperature.

We use these measurements to choose the optimal preheat
time τ given a set a of observed arrival times at the home. For
all possible target preheat times t : min(a)< t < max(a), we
calculate the expected energy cost by averaging the waste for
each arrival time a∈ a. The waste for arrival time a is defined
to be the energy required to heat with Stage 3 if a< t. Other-
wise, if a ≥ t, the waste is defined to be the energy required
to preheat with Stage 2 and then maintain the temperature
using Stage 1 for time a− t, until the occupants arrive. Once
the expected energy costs are calculated, we set τ to be the
time t with the lowest expected energy cost.

To illustrate this optimization process, we calculated the
optimal preheat time given the empirical arrival times found
in the publicly available Tulum dataset (excluding week-
ends), which was created by monitoring the occupants of a
home for approximately one month [31]. Figure 6 shows the
expected energy cost for all preheat times between 4:45 PM
and 6:45 PM. This figure illustrates that, if the system pre-
heats too early (left side), it wastes energy due to maintaining
a high setpoint temperature too long. If the system preheats
too late (right side), it wastes energy because it must react
with the inefficient but fast-reacting Stage 3 heating system,
if occupants arrive before preheating is complete. The sys-
tem can achieve the minimum energy usage by choosing a
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Figure 7. A deeper setback degree has a larger impact on
energy savings than a longer setback period.

target preheating time of 6:04 PM. Preheating to this time
requires 9% less energy on average than a purely reactive
thermostat. It is worth noting that optimal preheat time is
typically not the same as the expected arrival time of the oc-
cupant; it changes based on the efficiency levels of the HVAC
equipment.

3.4 Using Deep Setbacks
The typical setback temperature is 8 degrees from the set-

point, which is well above the safety limit for a house and
causes energy consumption even when the house is vacant.
Shallow setback temperatures are typically used to reduce
risk of comfort loss, in case the building becomes occupied
at that time. Because the smart thermostat responds to occu-
pancy events, it can increase energy savings by using deeper
setbacks during periods when the building is unoccupied and
occupants are highly unlikely to return. Specifically, given a
historical set of arrival times a, the smart thermostat uses a
deep setback as soon as the building is detected to be unoccu-
pied, and switches to a typical shallow setback at the earliest



Figure 9. For realistic energy calculations and predic-
tions, we created and empirically validated an energy
model of the house and HVAC system shown here.

previously observed arrival time min(a), which reduces the
time required to recover a comfortable temperature once the
occupants return.

Figure 7 illustrates that deeper setback temperatures have
a larger impact on energy savings than longer setback peri-
ods: a five degree increase in setback temperature for an hour
has the same effect as an additional five hours of setback time
that uses the normal setback temperature, even in a moderate
climate like Washington, D.C.. Since the smart thermostat
either preheats the home or quickly responds to occupant ar-
rivals, it can exploit the large energy savings made possible
by deep setbacks without sacrificing occupant comfort.

To illustrate the concept of a deep setback, Figure 8 shows
the distributions of leave and return times for the publicly
available Kasteren [25] and Tulum [31] home monitoring
datasets, excluding weekends. The individual in the Tu-
lum study is consistently away from home for a longer pe-
riod of time, and will therefore benefit more from deep set-
backs. The length of a deep setback depends on the mini-
mum arrival time of a household, and so the individual in the
Kasteren dataset does not obtain a larger benefit from deep
setbacks even though he/she sometimes returns very late in
the evening.

4 Experimental Setup
In this section, we describe the data collection process and

the simulation framework used to evaluate the smart thermo-
stat.

4.1 Collecting Occupancy Data
Occupancy patterns play a significant role in the perfor-

mance of the smart thermostat. To investigate the impact of
occupancy patterns on the performance of smart thermostat,
we use occupancy patterns collected through three means:
(i) the empirical data traces from 8 instrumented homes, (ii)
the occupant surveys of 41 homes, and (iii) two public smart
home datasets.

We use the empirical sensor data to evaluate all three
phases of smart thermostat, but cannot evaluate fast reac-
tion using the data collected through the other two sources

#Residents #Rooms #Motion #Doors #Door #Weeks

Sensors Sensors

1 7 7 5 3 2

1 3 3 3 2 1

1 4 4 3 1 1

1 5 4 3 1 1

2 5 5 3 1 2

3 5 5 4 2 1

3 4 4 3 1 1

2 5 5 4 2 1

Table 1. Details of the 8 homes used in deployments

because they lack the sensor data required for fast reaction.
Therefore, they are used to evaluate only the deep setback
and preheating.

4.1.1 Sensor Deployments
We deploy X10 motion sensors and door sensors in 8

homes to collect occupancy and sleep information. These
homes include both single-person and multi-person resi-
dences, and the people living in the home include students,
professionals and homemakers. For example, one home in-
cludes a graduate student couple along with an elderly res-
ident, two other homes include young working profession-
als, and another home includes three graduate students. The
duration of the sensor deployments varies from one to two
weeks. In general, we deploy one motion sensor in each
room and one door sensor on each entryway to the home, and
some inner doors. However, we do not instrument rooms or
entryways that are very infrequently used. Table 1 summa-
rizes the information about the homes.

We collect ground truth using a manual post-processing
of the data and daily interviews with the residents to clar-
ify ambiguous or questionable data. The ground truth values
used for this study are best estimates by labeling user activ-
ities manually, but are not expected to be perfectly accurate.
Ground truth in home monitoring experiments is very diffi-
cult to collect, and previous studies have used a wide vari-
ety of approaches ranging from self reports to video camera
recordings to having a proctor physically on site to monitor
home activities [32, 25, 33]. None of these schemes for cre-
ating ground truth are expected to be perfect.

4.1.2 Surveys and Data Collection
To augment the home deployments, we collect data from

another 41 households for four weeks using surveys: each
individual is instructed to write down their sleep, wake,
leave, and arrive times every day, and the data are collected
through periodic telephone calls. The period of the telephone
calls ranges from once per day to once per week. The sur-
veyed individuals range from students to professionals to re-
tirees. The households comprise a variety of single-person
and multi-person residences from various parts of the east-
ern coast in U.S.. The times collected through these surveys
are expected to be precise within 15 minutes, since many
residents report times in 15-minute intervals. Overall, the
occupants can be categorized into five different lifestyles: re-
tirees, students, professionals, young professionals and fam-
ilies.
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Figure 8. The duration of deep setback varies among different people, and depends only on the earliest observed arrival
time; late arrivals do not have additional benefit from deep setbacks.

In addition to surveys, we analyze the leave, return, wake,
and sleep times from two publicly-available data sets that
contain home occupancy information for two individuals
over the course of approximately one month each. These
data sets are collected by manually labeling activities such
as sleeping, eating, and bathing, and leaving home. We
call these the Kasteren [25] and Tulum [31] datasets, respec-
tively. For the purposes of this study, we only use the leave
home, arrive home, and sleep event labels.

4.2 Simulation Framework
The practical performance of the smart thermostat can

be affected by many factors such as outdoor temperature,
air leakage and house insulation. Therefore, it is impor-
tant to evaluate the smart thermostat with various climates
and building conditions. However, large-scale experiments
are extremely difficult due to resource constraints. To ad-
dress this problem, we have modeled the home in Figure 9
and validated the model by comparing empirical energy mea-
surements and energy predictions generated using the Ener-
gyPlus simulator. This validated model allows us to evaluate
the smart thermostat under various conditions, such as dif-
ferent climates, that cannot be easily done empirically.

4.2.1 EnergyPlus Simulator
In our experiments, we use whole-house thermal simu-

lation modeling provided by the U.S. Department of En-
ergy’s EnergyPlus simulator as a framework to evaluate dif-
ferent thermostat algorithms under different housing condi-
tions and climates. EnergyPlus is developed and distributed
by the U.S. Department of Energy’s Energy Efficiency and
Renewable Energy division, derived from and extending the
earlier DOE-2 and BLAST simulators. It has won awards for
R&D, Technology Transfer and Technical Excellence, and is
widely regarded as the premier baseline energy performance
simulation tool in the industry.

In the simulation, a model is described which inte-
grates the physical description of a building (including walls,
floors, roofs, windows and doors, each with associated con-
struction properties such as R-Value of materials used, size
of walls, location and type of windows) with the descrip-
tions of mechanical equipment (heating and cooling), me-
chanical ventilation schedules, occupancy schedules, other
household equipment, and so on. The simulation applies
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Figure 10. The observed energy usage closely matches
the values predicted by our model.

this model to a time-series thermal calculation using well-
known thermal transfer equations and aggregate climate and
weather data from local airports and weather stations. The
calculations output interior and exterior air temperatures, en-
ergy consumption, heating and cooling loads and indices for
human comfort, among numerous other results. The simula-
tion is performed for extreme heating and cooling periods to
establish mechanical equipment sizing and performance re-
sponse, and can be carried out for a full year or part of the
year to obtain comprehensive or specific results.

4.2.2 Simulation Model Validation
To create realistic energy calculations and predictions, we

instrumented and modeled a two-story, 1700 square foot res-
idential building equipped with a three-stage HVAC system,
as illustrated in Figure 9. The building contains over 100 sen-
sors to monitor building operation and response, including
80 temperature and 40 humidity sensors, 15 motion sensors,
7 door sensors, electric power metering, and a Web-enabled
thermostat that provides both control and operational logs.
We create a detailed model of the system that includes the
building location, construction properties and multistage op-



Wall Insulation Air Infiltration

R-value (ft2◦Fh/BTU) Air Changes per Hour (ACH)

Poor 3.6 1.5

Moderate 13.2 0.8

Well 25.7 0.25

Table 2. Building conditions using in our analysis

Climate Zones Locations

Zone 1 Minneapolis / St. Paul, MN

Zone 2 Pittsburgh, PA

Zone 3 Washington, D.C. / Stirling, VA

Zone 4 San Francisco, CA

Zone 5 Houston, TX

Table 3. Weather conditions used in our analysis

erations of the HVAC system.
In order to validate the fidelity of our model, we run the

same control and operational logs of the real system in the
simulation and compare the results with the empirical mea-
surements. In order to perform the simulation under the same
weather conditions, we collect the actual weather records of
the week when the data collection took place from the local
airport weather station that provides hourly data resolution.
Also, to increase the credibility, we pick a week in the winter
with fluctuating outdoor temperature that causes the HVAC
system to react in different ways. We perform a regression
analysis on the simulation and empirical results, as shown
in Figure 10, and find that the average daily error of HVAC
energy usage is 1.80 kWh, smaller than the accuracy of the
power meter. Therefore, these results indicate that the sim-
ulation accurately represents the empirical energy consump-
tion as observed in our real testbed.

4.2.3 Simulation Configurations
Using the validated model, we evaluated our system using

all sets of occupancy measurements under multiple different
building conditions and climate zones. Table 2 lists three
types of building insulations, each of which is decided by the
combination of wall construction and air leakage. Table 3
lists the locations that represents the five climate zones in
the U.S., ranging from cold Minneapolis, Minnesota to hot
Houston, Texas.

In these simulations, we focus on the energy usage of
HVAC. Any additional internal loads from artificial lights,
appliances, and radiant heat from occupants are intentionally
excluded, as they would render results of time and temper-
ature setback studies ambiguous. Natural and artificial air
ventilation are also intentionally excluded to keep results fo-
cused on changes in thermostat. All the simulation output
are tabulated at a one-minute time step.

5 Evaluation
In this section, we first describe the baseline algorithms

and the evaluation metrics that are used for evaluation and
comparison. Then, we present the performance of the smart
thermostat.

5.1 Baseline and Optimal Algorithms
We compare the smart thermostat against the reactive

thermostat described in Section 2 that infers three occupant

states from sensor data, as shown in Figure 4(a). The reac-
tive algorithm switches to the Active state whenever it senses
motion firings from a home. The algorithm then waits for
a silent period (Tlast) at least threshold minutes long before
switching to the Idle state. The Idle state is classified as Away
during the day, and as Sleep during the night from 10 PM to
10 AM (fixed time interval). The reactive thermostats on the
market use proprietary algorithms that are not publicly avail-
able, so we created a best-effort replica of the system based
on marketing literature and empirical observations of a real
system in action [14, 15]. As a standard, we use the Ener-
gyStar setpoint temperatures whenever the occupant wakes
or arrives, and the EnergyStar setback temperature whenever
the occupant leaves or sleeps [34].

Programmable thermostats do not react to occupancy at
all, and so they always achieve the same energy savings, but
the comfort sacrifice changes per home. This makes the en-
ergy savings difficult to interpret, because it is unclear how
much of the energy saving is due to eliminated waste and
how much is due to sacrificed comfort. For this reason, we
do not include the programmable thermostat in the compari-
son.

In our comparison with the reactive thermostat, we use
a threshold of five minutes because it produces a similar
comfort sacrifice to the smart thermostat, which makes the
energy savings more comparable. As mentioned in Sec-
tion 3.2, the HMM in our fast reaction technique also uses
a five-minute time interval with which to decide state transi-
tions. In actual commercial products, such as the BAYweb
reactive thermostat [14], a larger threshold such as 60 min-
utes is usually used by default [35]. Our comparison with
five-minute threshold is conservative, because using higher
threshold values would only decrease energy savings.

We compare our system with an optimal algorithm that
provides the theoretical upper bound on energy savings. We
assume that the optimal scheme knows the states of the home
at all times, and that there is no lag time in the temperature
adjustment at the state switch. This implies that the miss
time of the optimal scheme will always be zero. The op-
timal algorithm applies deep setback whenever the home is
unoccupied, and uses the same temperature settings as Ener-
gyStar whenever the home is occupied. Thus, no algorithm
could achieve higher energy savings than the optimal algo-
rithm without sacrificing comfort.

The smart thermostat runs over the data traces of either
the home deployments or the surveys and other datasets. In
order to maintain the validation with limited number of data,
we perform leave-one-out cross validation over the number
of days of the deployment when training the HMM of on-
line inference algorithm in the smart system. For example,
given n days of deployment, we test the HMM on each day
using the remaining n− 1 days of labeled ground truth data
as training data.

5.2 Evaluation Metrics
We evaluate the trade-off between energy efficiency and

user comfort in the experimental results with two quantita-
tive metrics: energy saving and miss time. Energy saving
is defined as the percentage of saving by the scheme over
the cost of continuously maintaining the setpoint tempera-
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Figure 11. Based on data collected in 8 homes, the smart thermostat saves more energy than reactive systems and
sacrifices less comfort.

ture. Miss time is defined as the total time when the home
is occupied but the temperature has not reached the setpoint
temperature. In order to address small temperature fluctua-
tions, our metric tolerates 1°C (1.8°F) temperature difference
between the actual temperature and the setpoint. This value
is within the bounds of sensor noise.

5.3 Home Deployments Evaluation
We evaluate the smart thermostat against the baseline and

optimal algorithms in the 8 home deployments using our val-
idated house model. In the simulation, we run 14 days in
January and July using the climate in Charlottesville, VA to
evaluate both cooling and heating. We set the deep setbacks
to 10°C (50°F) for heating and 40°C (104°F) for cooling,
which are safe temperatures that do not cause damage to a
house in real life. To further improve the credibility, we ran-
domly map each day of occupancy data traces to each day of
weather data traces. These simulations are used to calculate
the average of heating in the middle of winter and cooling in
the middle of summer.

Figure 11(a) shows the results of energy savings of the
8 homes using sensor deployments. The smart thermo-
stat outperforms the reactive thermostat in all the 8 homes.
Homes A-D have regular occupancy patterns so that our sys-
tem achieves more energy savings, with an average of 16.3
kWh (38.4%), while the reactive thermostat saves 8.7 kWh
(20.6%). In contrast, homes E-H are typically occupied for
most of the day. The average energy saving of the smart
thermostat decreases to 7.4 kWh (17.4%). However, the re-
active thermostat wastes energy due to the frequent reactions,
which are costly because they must use the higher capacity
but lower efficiency stage of HVAC operation. The average
energy waste is -2.9 kWh (-6.9%) and the maximum waste is
close to 4.2 kWh (10.0%). On average, the reactive thermo-
stat saves 2.9 kWh (6.8%) while the smart thermostat saves
11.8 kWh (27.9%), which approaches the optimal saving at
15.2 kWh (35.9%). Thus, the smart thermostat can reduce
energy consumption in a wide range of homes that have dif-

ferent occupancy patterns.

Figure 11(b) shows the miss time of the same three
schemes in the 8 homes. Compared to the reactive thermo-
stat, the smart thermostat is better with three homes (B, C and
E), the same with one home (G), and slightly worse with four
homes (A, D, F and H). The miss times of reactive thermo-
stat, however, are much more variable than those of the smart
thermostat. On average, the smart thermostat has 48 minutes
of miss time, while the reactive thermostat has 60 minutes.
Thus, the smart thermostat actually reduces miss time by 12
minutes on average. We conclude that the two approaches
are roughly comparable in terms of miss time, since this is
a small average daily improvement that would not likely be
noticed in most homes. On the other hand, extreme cases
such as Homes B and C probably would be noticeable: the
smart thermostat decrease their daily miss times by 55 and
80 minutes, respectively.

6 Analysis
In this section, we analyze how much each component of

the smart thermostat algorithm contributes to its energy sav-
ings. We also discuss the impact of the number of sensors,
climate zones, and building types on the performance of the
smart thermostat. Finally, we use a combination of census
data, weather data and housing data to weight each of these
parameters to generate a weighted sum of expected energy
savings if the smart thermostat were applied across the en-
tire U.S..

6.1 Inference Accuracy
We evaluate the accuracy with which our HMM approach

tracks occupancy of the home and compare it to the com-
mercial reactive algorithm described in Section 5.1. We ex-
pect the HMM approach to outperform the naive reactive al-
gorithm, since the HMM incorporates rich semantic infor-
mation from the deployment, in contrast to the commercial
reactive algorithm that only uses the number and timing of
sensor firings.
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Figure 12. Our HMM has higher accuracy of on-line oc-
cupancy inference than baseline approaches.

Figure 12 shows the accuracy of our HMM approach in
inferring the states in the home deployments, in compari-
son to the naive reactive algorithm. As parameterized by
threshold, we evaluate the reactive algorithm with different
values of threshold, ranging from 5 to 120 minutes. Lower
threshold values result in aggressive implementations with
faster reaction to Away events, but also increases the proba-
bility of idle Active events being classified as Away; higher
threshold values result in more conservative implementa-
tions. To be fair to the reactive algorithm, we group Sleep
and Away events together as the Inactive state, since the re-
active scheme uses a simple fixed time window to differen-
tiate Sleep from Away events. We observe that the reactive
algorithm’s accuracy was lower when Sleep and Away are not
grouped together. We show three evaluation metrics, namely,
percentage of events correctly labeled, percentage of events
where Active is classified as Inactive, and vice versa.

The results in Figure 12 show that the HMM approach
(88% correctly labeled) outperforms the best reactive algo-
rithm (React5 with only 78% correctly labeled). We see
that the HMM classifies fewer active events as inactive and
fewer inactive events as active, leading to lower miss times
and higher energy gains for the smart thermostat. Thus, our
HMM approach is able to achieve higher accuracy than reac-
tive schemes because it is able to automatically incorporate
semantic information about which sensors are being fired in
the home (living room, bathroom, kitchen or bedroom), and
other useful context not currently used in commercial im-
plementations. We also observe that, as threshold increases,
the reactive algorithm is able to reduce or eliminate the num-
ber of active events that are labeled as inactive, by essen-
tially waiting for a longer silence period to ensure high con-
fidence in the Inactive state prediction. However, increasing
the threshold also leads to more Inactive events being clas-
sified as Active, since the algorithm has to wait for a longer
threshold period in the Active state, before changing the state
to Inactive.
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Figure 13. All components of the smart thermostat con-
tribute to the reduced energy usage and miss time (data
is from Home B).

6.2 Effect of Each Component
The smart thermostat consists of three main components:

fast reaction, deep setback, and preheating. To investigate
the effect of each component, we run the experiments while
adding these components in an accumulative fashion, start-
ing from fast reaction, then adding deep setback and finally
adding preheating. We use data from home B for this anal-
ysis, and the energy saving and miss time are shown in Fig-
ure 13.

The results indicate the effect of each component on total
energy saving and miss time. First, we see that fast reaction
outperforms the reactive thermostat in energy saving, from
22.0% to 23.2%, and miss time, from 107 minutes to 56 min-
utes. This is because our on-line inference algorithm is much
more effective than the simple threshold used in the reac-
tive algorithm in both responsiveness and accuracy. Once the
deep setback is added, the smart thermostat saves 8.6% more
energy while the miss time increases slightly by 2 minute due
to the larger temperature offset in the reactions. Finally, by
preheating when possible, the smart thermostat can achieve
energy saving of 34.0% and improve miss time of 51 min-
utes.

6.3 Sensitivity Analysis
We perform a sensitivity analysis to identify how sensor

deployments, occupant types and climates affect the perfor-
mance of the smart thermostat.

6.3.1 Sensitivity to Number of Sensors
The evaluation of our on-line HMM inference algorithm

in Figure 12 uses data from all the sensors installed in our 8
homes. This includes more sensors than shown in Table 1,
and includes sensors on daily use objects such as the fridge,
microwave, stove, sink, and shower, deployed for activity
recognition purposes [36]. In this section, we perform a sim-
ple analysis of how many sensors are actually required for
our proposed smart thermostat.

In particular, we consider two sets of sensors: (i) the full
set of sensors (12-20 sensors) including motion sensors, door
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Figure 14. The HMM event detection accuracy is robust
even with only a small number of sensors.

sensors and reed switches on everyday objects, and (ii) the
select set of sensors (3-5 sensors), including only the motion
sensor in the living room, bathroom, bedroom, and kitchen,
and the front door switch sensor, for all our 8 homes. The
select set is chosen based on intuition about which areas in
the test homes would be most indicative of the three activ-
ity states, and the same analysis could be done on-site by a
trained technician at the time of installation. We only chose
the select set once for each house, and did not choose and
evaluate multiple sets or use post-facto optimization.

Figure 14 shows the percentage of resident states cor-
rectly identified by the HMM for our two sensing choices.
We observe that the difference in inference accuracy for
these two schemes is almost negligible for all homes. Our
selected sensor set sufficiently captures resident activity in
our 8 homes for the purpose of accurately inferring occu-
pancy and sleep information. Figure 15 illustrates how the
smart thermostat performs for the 8 households with two dif-
ferent sensor sets. The results indicate that the smart thermo-
stat, for both sensor sets, provides similar energy saving and
miss time. The selected sensor set saves energy by 28.9%
on avarage, while the sening choice with all sensors achieves
the average energy saving of 23.6%. The average miss time
of the selected sensors is 54 minutes, while the set of all sen-
sors has 48 minutes of miss time on average. Thus, using
our deployments in 8 homes, we show the potential of using
a small set of 3-5 sensors at low costs (less than $25) to ac-
curately infer resident state for energy monitoring purposes.

6.3.2 Sensitivity to Occupancy Patterns
We divide the occupants of surveys into homes with pe-

riodic and aperiodic schedules by analyzing the occupancy
patterns in each case. For each category, we use the validated
house model and run the simulation for heating and cooling
for 14 days in January and July, respectively, using the same
weather file of our city. Also, for each simulation day, we
randomly pick one day out of the deployment days and use
its occupancy data for the simulation. When the simulation
finishes, we sum the results of all simulation days and then

get the average value for energy usage and miss time.
Figure 16 illustrates how the smart thermostat performs

for occupants with two main different occupancy patterns.
The results indicate that, for both occupant types, the smart
thermostat provides much higher energy saving and lower
miss time than the reactive thermostat. For aperiodic people,
smart achieves 26.4% energy saving and 44 minutes for miss
time, while reactive provides 20.0% energy saving and 60
minutes for miss time. For periodic people, smart achieves
32.4% energy saving and 38 minutes for miss time, while re-
active provides 23.0% energy saving and 65 minutes for miss
time. We observe that the smart thermostat benefits ”peri-
odic” more than ”aperiodic”. This is because the occupancy
dynamics of ”periodic” is lower than ”aperiodic”, making
it easier to preheat for these people. In general, the smart
thermostat is better than the reactive scheme across different
categories of occupancy patterns, in both energy saving and
miss time.

6.3.3 Sensitivity to Climate Zones
We evaluate the smart thermostat algorithm in each of the

five typical climate zones across the U.S.. For each climate
zone, we use the validated house model and run the simula-
tion for heating and cooling for 14 days in January and July,
respectively. Also, we randomly map the days of deploy-
ments to the simulation days. All the results are averaged by
the number of simulation days.

Figure 17 shows the effect of climate on the performance
of the smart thermostat, when used with professional occu-
pants. These results indicate that the smart thermostat pro-
vides higher energy saving and lower miss time than the re-
active thermostat. Another observation is that as the climate
becomes warmer from MN to TX, the smart thermostat ap-
proaches the optimal scheme in terms of percent energy sav-
ing. This is due to two reasons. First, the deep setbacks used
by the smart thermostat are beneficial during the day, but
are not used at night when the occupants are sleeping. This
helps warm climates more, where peak loads are typically
mid-day. In contrast, cold climates have peak loads at night.
The second reason why the smart thermostat helps more is
that the total energy used is higher in cold climates, but the
energy saved by the smart thermostat remains roughly con-
stant: in a warm climate, lowering the setpoint temperature
by 5-8 degrees may be enough to get the home’s heat to turn
completely off, saving 100% of the energy. In a cold cli-
mate, on the other hand, lowering the setpoint by the same
5-8 degrees will only reduce the energy bill by a fraction.

6.4 Projected Nationwide Savings
Based on the percentage of energy saved by the smart

thermostat in each climate zone (Figure 17(a)) and the U.S.
Energy Information Administration’s data (Table 4) on the
amount of energy used for heating [37] and cooling [38] by
residences in each zone, we estimate the amount of energy
that could be saved if the smart thermostat were deployed in
all homes with HVAC systems across the United States. We
estimate the energy saved, Ez in zone z as:

Ez = (Hz+Cz)∗Pz (1)

whereHz is the energy used for heating,Cz is the energy used
for cooling, and Pz is the percentage saved by using the smart
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Figure 15. Sensitivity to Number of Sensors
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Figure 16. Sensitivity to Occupancy Patterns
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Figure 17. Sensitivity to Climate Zones



Climate Zone Heating Cooling energy saving

(billion kWh) (billion kWh) (%)

1 9 6 25.1919

2 24 25 25.8860

3 34 33 32.4408

4 23 31 40.2601

5 25 88 47.7498

Total 115 183

Table 4. Energy usage for heating and cooling in each of
the five climate zones.

thermostat in that climate zone. The projected energy saved
nationally, NE, is:

NE =
5

∑
z=1

Ez (2)

and the percentage of energy saved nationally, PE, is:

PE =
NE

∑
5
z=1(Hz+Cz)

(3)

These calculations give the projected nationwide savings to
be 113.9 billion kWh or 38.22% of the electricity used for
heating and cooling.

7 Limitations and Future Work
In the current work, we assume that there are no pets or

plants in the building. However, the existence of pets and
plants would make a difference in the system design. For ex-
ample, we need to take the requirements of pets and plants
into consideration when deciding the setback temperatures,
and would need to account for pets when analyzing occu-
pancy sensor data. In the future work, we will provide an
interface to allow users to set customized setback tempera-
tures. Future improvements will also be needed to differen-
tiate between pets and people for occupancy sensing.

Another limitation of the current work is that we only
evaluate a single type of equipment; different equipment
types has different efficiencies, and will offer different risks
and benefits for preheating and precooling. In future work,
we plan to investigate more equipment types to do a sensitiv-
ity analysis, which will give us a more precise vision of the
potential impact of the smart thermostat if deployed at large
scale.

We plan to extend the smart thermostat and further im-
prove the energy efficiency with the use of zoning. Zoning
systems have long been used to stabilize the temperatures in
different parts of a home, such as the first and second floor,
but these systems are all thermostatically controlled. In pre-
liminary analysis, we find that only half of the rooms are
used for up to 60% of the time that a home is occupied, and
these rooms are somewhat predictable based on ongoing ac-
tivities and the time of day. This indicates the potential for
substantially more savings by combining the smart thermo-
stat with zoning systems.

8 Conclusions
In this paper, we present the concept of a smart thermo-

stat that senses occupancy statistics in a home in order to
save energy through improved control of the HVAC system.

This system uses a combination of long-term occupancy and
sleep patterns with real-time sensor data to control the HVAC
system. We evaluate the smart thermostat by analyzing 51
data sets, 8 of which were generated by deploying a real sen-
sor network in homes to collect the wake, leave, arrive, and
sleep times of the occupants. Our results indicate that the
smart thermostat can provide larger energy savings and more
comfort than existing baseline solutions. This approach has
a very low initial cost of less than $25 per home, and can
save 28% of residential HVAC energy consumption on av-
erage, without sacrificing comfort. This solution serves an
important need for low-cost energy consumption.

This project has the potential for a large impact because of
its low cost. The impact of many otherwise effective energy-
saving technologies is limited by high initial cost, because
they can take years or even decades to produce a positive re-
turn on investment. Studies have shown that energy-saving
technologies should produce a return on investment within
two years in order to achieve widespread adoption [39]. In
the U.S., the average expenditure per household for space
heating and electric air-conditioning is $677 [8] annually or
$56.42 per month. Therefore, our system should cost about
$230 to be financially viable, including the costs of hard-
ware, installation, configuration, and maintenance. Our anal-
ysis shows that the sensing-based solutions presented here
can be effective with a cost of less than $25 per home in
off-the-shelf hardware, and it will also be easy to retrofit to
existing homes and buildings. Recently, the American Re-
covery and Reinvestment Act of 2009 allocated $5 billion
toward helping low-income families improve the weatheriza-
tion of their home. However, this money is only expected to
achieve a small percentage of the national target for energy
reduction, and achieving the actual targets will require many
billions more. The cost profile of the smart thermostat would
give more bang for the buck to federal stimulus money: we
expect a cost of less than $10 billion in hardware to equip
all 130 million homes in the U.S. with our system, saving an
estimated 113.9 billion kWh nationwide per year. Due to its
low cost, this research will help propel the nation towards its
goal of a 25% improvement in the energy efficiency of exist-
ing buildings across the country by 2030, as defined by the
Architecture 2030 Challenge [40] and reiterated by President
Obama [41].
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