While Loops
If we need to check something multiple times, we can end up with a lot of “if’ statements
E.g., when Upsorn searches for someone with glasses, we would need a new “if’
statement for everyone in the class
We can shorten this with a while loop
When a computer encounters a while loop, it checks the condition
If the condition is true, it runs the code within the loop and checks again
If it is still true, it runs the code again and checks a third time
The while loop will continue to run until the condition is not true
This means we could end up with an infinite loop!
Infinite loops crash computers (or Archimedes)
If you submit code with an infinite loop, Archimedes crashes
This makes no one get their code back in 2 hours
Please don’t do this
Always ensure that your condition will be broken at some point before you run the
program

Example from powerpoint:
ctr = 0
experts = ["wear", "no", "no", "wear", "wear", '"no"]
while ctr < len(experts):
expert = experts[ctr]
if expert == "wear":
print ("shake")
else:
print ("no")
ctr += 1

Plug this into Visualize Python for a detailed explanation of what the computer is doing:
At start, ctr = 0 and len(experts) = 6 so ctr < len(experts), so the code runs
Experts|ctr] is the value at location 0, i.e., “wear”

Bc it is “wear”, we print “shake”
Ctr— 1

Ctr = 1 and len(experts) = 6 so ctr < len(experts), code runs
Experts|ctr] is the value at location 1, i.e., “no”

Bc it is “no”, we print “no”

Ctr— 2

” ”

Following this, we print “no” “shake” “shake” and “no”

After the last print of “no”, we increment ctr — 6

Ctr = 6 and len(experts) = 6 so ctr < len(experts) is False
We therefore exit the while loop here

If we wanted to express this with “if” statements, we would need many more lines of code
In addition, if we did not know the length of experts, we would not know how many times to check
if there’s another value

This while loop can handle a list with 1 value or 100

Cannot do that with an “if” statement

While is not the only looping keyword
These use a Boolean expression as the condition
If we want to run code a certain number of times, we can use a variable:
index =1
while index <= 10:
print (index)
index += 1
OR
index = 1
while True:
if index > 10:
break
print (index)
index += 1
Both of which print:
1

O NO Ok~ OODN

9
10
For is also used (it looks like for i in range (#):)
We will not be discussing for loops today, but they take a set of values and apply the loop
to each of the values
this is my words, not Upsorn’s While loops are generally more useful if we don’t know how
many times we want the loop to run, but have a specific condition we want to stop it at; For loops
are more useful if we have a specific number of times we want the code to run or list to apply the
code to, especially if we don’t have a specific condition to stop at

Two more examples:
while (input ("Do you want to continue (Y/N) ? ")) == Y:

print ("let's continue")

done = ""
while done != "quit":
print ("let's continue -- not done yet")

done = input ("Continue? (type quit to quit)")

An infinite loop:
cnt =1
while infinite > -1:

infinite is undefined here, so we get an error

we assume we are getting infinite from some other code or file
cnt cannot get us out of the loop bc it is not in the condition
always 'take full control of your loop", know that it will break eventually

print (cnt)
cnt += 1

Loop Examples:
(Not available online)

(If what is being printed doesn’t make sense, can always put in Visualize Python)

Code:
x = 10
while x > 5:
print (x)
x == 1
Prints:
10
9
8
7
6
Code:

#write a loop that takes a word from the user and prints it until the user

word = input ("Give me a word (type stop to quit) ")
while word != "stop":
print (word)
word = input ("Give me a word (type stop to quit) ")
Prints:
Give me a word (type stop to quit) one
one
Give me a word (type stop to quit) two
two
Give me a word (type stop to quit) three
three

types

"stop"

Give me a word (type stop to quit) four

four

Give me a word (type stop to quit) five

five

Give me a word (type stop to quit) gonna stop now
gonna stop now

Give me a word (type stop to quit) stop

my inputs are in red

Code:

#now a while loop that prints '"stop" when we stop, and 1is shorter
word = ""

while word != "stop":

word = input ("Give me a word (stop to stop) ")
print (word)
Prints:

Give me a word (stop to stop) test
test
Give me a word (stop to stop) tes
tes
Give me a word (stop to stop) test
test
Give me a word (stop to stop) stop
stop

Code:
number = -1
while number < 1 or number > 100:
number = int (input ("Give me a number between 1 and 100: "))
print (number)
Prints:
Give me a number between 1 and 100: -5
-5
Give me a number between 1 and 100: 500
500
Give me a number between 1 and 100: 50
50

In other words, we can use logical operators in the conditions of our while loops. Here’s the table
again:

X y xandy Xory not x not y

False False False False True True

False True False True True False
True False False True False True
Ture True True True False False

