For Loops and Intro to Lists
Review: while loops run while a condition is True, for loops iterate over a “collection”--a list, a
string, a set of integers, or more
6 kinds of collections in Python:
1. Set: unordered group of any values

2. Range: ordered group of integers, in ascending order, index
3. String: ordered group of characters, index, immutable
4. Tuple: ordered group of any type of values, index, immutable
5. List: ordered group of any type of values, index, mutable
6. Dictionary (dict): unordered and index-less group of any values
0 set unordered | any values | unindexed mutable
1 range ordered integers indexed (start, end, | immutable
step)
2 string ordered characters | indexed “Letters immutable
and
spaces”
3 tuple ordered any values | indexed (“various”, | immutable
1, [items’])
4 list ordered any values | indexed [items’, 1, | mutable
['go’,
‘here’]]
5 dictionary | unordered | any values | unindexed mutable
(dict)

Indexes start at zero and let us call specific values by position, even if we don’t know what they
are; for example, the above table of collection types is

What collections look like:
print (range (5))

ts at zero

for i in range (5):

print (i)

does the exact same thing

for i in range (2, 10):
print (i)

b nAT7 A ranae ~Fa3rFa o 2 Tmateoa~d AF o] TR, 1t N7q JAaar o~ T 174 7
now, the range starts at 2 instead of 0, and goes up to but doesn't include 10

immutable

mutable

mutable

for i in range (2, 10, 2):

print (i)
the third parameter is a '"step'", meaning instead of going up 1 each time, it goes up 2
it prints 2, 4, 6, 8

for i in range (10, 2, -3):
print (i)

can step backwards

prints 10, 7, 4

string = "welcome back from the break"
for i in string:
print (i)

prints every character, including spaces, on its own line

print (string[0:7])

"print string from 0 to 7

the colon indicates where you start and stop

prints '"welcome", i.e. the characters is positions 0, 1, 2, 3, 4, 5, and 6
[:7] means beginning to 7

[10:] means 10 to end

we call this "splicing"

words = string.split()

print (words)

every time there is a space, it recognizes a word break

it then puts each word in a list

this list is ['welcome', 'back', 'from', 'the', 'break']

string.split (";")

splits every time there is a colon, instead of every time there is a space

tuple = (3, "hello")

can have anything in it, even functions
print (tuple[0])

prints the item at index 0 of the tuple
print (tuplel:2])

prints both items

print (tuple[:1] + tuple[l:])

concatenates the two separate items in the tuple back together

list = [3, "hello", [1,2,3]1]

this list has another list in it

print (1ist[0])

can call items from a list the same as with a tuple
del 1list[1]

removes the item at index 1 from the list

list is now [3, [1,2,3]]

An application of collections in a function:

def mcdonald(animals, sounds):

mrrn

Sings old mcdonald for every animal and sound pair given, using a for loop
:param animals: the animals we want sung
:type animals: 1list
:param sounds: the sounds those animals make
:type sounds: list
:return: None
if len(animals) <= len(sounds) :
max = len(animals) + 1
else:
max = len(sounds) + 1
for i in range (0, max):
print ("old mcdonald had a farm E I E I O")
print ("and on his farm, he has a", animals[i], "E I E I O")
print ("with a", sounds[i], sounds[i], "here, and a", sounds[i], sounds[i],
"there")
print ("here a", sounds[i], "there a", sounds[i], "everywhere a", sounds[i],
sounds[1])
print ("old mcdonald had a farm E I E I O")

animals = ["pig", "horse", "chicken", "dinosaur", "cat"]

sounds = ["oink", '"neigh", "cluck", "roar'"]

def mcdonald2 (animals, sounds) :
Sings old mcdonald for every animal and sound pair given, using a while loop
:param animals: the animals we want sung
:type animals: 1list
:param sounds: the sounds those animals make
:type sounds: 1ist
:return: None
o
i=0
if len(animals) <= len(sounds) :
max = len(animals) + 1
else:
max = len(sounds) + 1
while i < max:
print ("old mcdonald had a farm E I E I O")
print ("and on his farm, he has a", animals[i], "E I E I O")
print ("with a", sounds[i], sounds[i], "here, and a", sounds[i], sounds[i],
"there")
print ("here a", sounds[i], "there a", sounds[i], "everywhere a'", sounds[i],
sounds[i])
print ("old mcdonald had a farm E I E I O")
i+=1

Iterating over a collection can be done with a for or a while loop; is generally easier with a for
loop

Retrieve an item using its “index” (location 0 to list size) in brackets

