Applying and Processing Lists and Strings
Starting with Practice Of The Day 1
http://www.cs.virginia.edu/~up3f/cs1110/practice-of-the-day/
My Answer:

Write a function called most common names that
takes a list of names and returns 2 things:

(1) the name that appears the most often, and

(2) the number of occurrence
If there is a tie, return the first most common name and 1its occurrence
remember: the order of the return is important

hint: Lists have a function called .count (x) that returns

#
#
#
#
#
#
#
#
#
#

the number of times x appears in the 1ist

def most common names (names_ list):
max_count = 0
max name = ""
for name in names list:
times = names list.count (name)
if times > max count:
max count = times
max name = name

return max name, max_count

print (most common names (["Tom", "Mary", "Jeff", "Tom", "Jay", "Ann", "Paul",
"A-rln" , 'lAIlnll , llTomll , ||Maryll , IITomll , " Jayll J))

print (most common names (["Jim", "Mary", "Jeff", "Mary", "Jay", "Ann", "Paul",
HAnn"]))

Answer we put together as a class:
def most common names (names list):
max_count = 0
max name = ""
our running variables to keep count
for i in range(len(names list)):

using this, we access the item as "names list[i]"

if we say instead "for i in names list'", we access the item simply as "i"

if max count < names list.count (names list[i]):

1f the maximum occurrences 1s less than the amount of times '"name"

occurs
max_count = names_ list.count (names list[i])
then, replace the max with how many times this name occurs

max name = names list([i]

and, change the name that is occurring most often to this new name

return max name, max count

returns a tuple “multiple return”, must be in the correct order

print (most common names (["Tom", "Mary", "Jeff", "Tom", "Jay", "Ann", "Paul",

HAnnH , "AnnH , HTom" , llMaerl , "Tomll , n Jayll J))
print (most common names (["Jim", "Mary", "Jeff", "Mary", "Jay", "Ann", "Paul",
"Arln"]))

***Watch these in Visualize Python to clarify how computers treat a list

Strings as Sets, and What We Can Do With Them:

len(“string”) returns the number of characters in a string (its “size”)

“String1” + “string2” concatenates two strings into “String1string2”

“String” * integer repeats a string (eg. “hello” * 3 = “hellohellohello”)

int(string) casts the string as an int IF possible

float(string) casts the string as a float IF possible

str(value) converts the value into a string

in and not in check whether a character or set of characters appears in a string

isdigit() and isspace() recognize the type of specific characters within a string

islower() and isupper() check case, lower() and upper() convert to all one case

strip(character) and variations remove characters (see slides)

join() combines strings (see slides for variations)

split(char) divides the string into two separate strings whenever it sees the character
If no character is given, it will split at spaces

count(substring) tells us how many times the substring appears

endswith(substring) checks if it ends with the substring

find(substring) tells us its index

index(substring) also tells us its index

replace(old, new) replaces a substring

String Both List

Immutable (cannot be Is Indexed Mutable (can be changed

changed after assignment) Can be sliced using [}] after assignment)
Complex data type

Two strings are equal to one another IFF:
Same length
Same sequence
Same case

In-Class Example of String Manipulation:
(from http://www.cs.virginia.edu/~up3f/cs1110/examples/datatype/)

Convert th

>ntence to a st in which

ng

For example, the string "StudyAndDoMorePractice'

would be converted to "Study and do more practice"

def convert sentence (sentence) :

result =
word = ""
for letter in sentence:
if letter.isupper():
if len(word) > O:
if len(result) > 0:
word = word.lower ()
result += word + " "
word = ""
word += letter
result += word.lower ()
return result

watch in Visualize Python

main
in_sentence = "StudyAndDoMorePractice"
expected sentence = "Study and do more practice"

testl = convert sentence(in sentence)
if testl == expected sentence:
print ("You correctly converted " + in sentence + " to \"" + testl + "\"")
else:
print ("convert sentence(" + in sentence + ") should be \"" + expected sentence + "\" +

" but you got \"" + testl + "\". Please check your code.")
in_sentence = "PythonIsFun"
expected sentence = "Python is fun"

print (convert sentence (in_sentence))

print (convert sentence ("ProblemSolvingSkillsNeedPractice"))

