Flexible Indices: Dict
Practice of the Day (http://www.cs.virginia.edu/~up3f/cs1110/practice-of-the-day/) 13:

Convert the following while loop into a for loop that produces the same output

i=7
while 1 > -3:
print (i*1i)

i-=1

for i in range(7, -3, -1):
print (i*i)

POTD 14:

Write a function that takes a sentence,

check if there are repeated words.

Your program will return a list of the repeated words

Note: repeated words are words that occur multiple times in consecutive

multiple occurrences of the same word should be reported once

If there 1is no repeated word or the file is empty,

return []

For example, 1f a sentence contains

'T will do more more practice and my bring my my my questions to class'

Your program will return

['more', 'my']

Note that your choice of data structure can affect the return formats.

For this practice, any formats would be fine.

You should consider:
- What data structure would you be using?

- Why would you use that data structure?

L T T S S Y N

def check repeated words (sentence):
result = []
list = sentence.split ()
for i in range(len(list) - 1):
if list[i] == list[i+l]:
if list[i] not in result:
result.append(list[i])
return result

print (check repeated words('I will do more more practice and my bring my my my questions
to class'))

(i*i)

Dictionary: complex data type (collection), mutable (individual items can be accessed and
changed), unordered (no index)
Each item in a dictionary has a value and a key
(Each item in a list or string has a value and an index)
Keys are “deterministic’, meaning they refer to only one value
For example, in SIS, we have our Student ID as a key (vib9ae) and our name as a value (Layne
Berry)
Keys do not need to be integers incremented by 1, as indexes do
To create a dictionary, supply both a key and a value, separated by a colon
phonebook = {'george':'111-1111', 'tom':'222-2222"'}
print (phonebook)
print (phonebook['tom'])
Must access values by their key; some values can have multiple keys, but no key ever has multiple
values
Assigning a new value to an existing key deletes the old value
phonebook['george'] = '333-3333"
print (phonebook)
Assigning a new value to a nonexistent key adds the new key and value to the dictionary
phonebook['joe'] = '444-4444"
print (phonebook)
Delete an element from a dictionary two ways (del and dict.pop())
del phonebook['tom']
removes 'tom':'222-2222"

phone number = phonebook.pop('tom')

PR

numoer

as phone

Delete all elements with dict.clear()
Get the length of a dictionary the same way as other collections

num items = len (phonebook)

and removes tom

print (phonebook)
Retrieve data from a dictionary
phonebook.get ('joe')

retrieves the value at (444-4444)

4 1 F TS5l A~can! Asr] ot - 174 ~ M"nAna
1r "joe' doesn't exist, returns '"none

phonebook.get ('tim', 'not available')

1f 'tim' exists, retrieves 1its value

4 ~A+Fhorud oo A | P ~tra ~Tal
otherwise, returns "not available

phonebook.items ()

retrieves everything

phonebook. keys ()
retrieves just the keys
phonebook.values ()

retrieves just the values

Final note: all data tybes can be in a dictionary, and in and not in work on dictionaries

In-Class Examples in Pycharm:

phonebook = {'upsorn':'111-1111"'}

print (phonebook)
{'upsorn':'111-1111"}

print ('upsorn' in phonebook.keys())

True

print ('luther' in phonebook.keys())

False

phonebook['luther'] = '222-2222"'
phonebook['craig'] = '333-3333"

print ("keys =", phonebook.keys())
print ("values =", phonebook.values())
print ("items =", phonebook.items())

not printing data in any particular order

print (phonebook.clear())

None

print (phonebook)

{}

phonebook['upsorn'] = '111-1111"
phonebook ['craig'] = '333-3333'

print (phonebook)

{'upsorn': '111-1111", '333-3333"}
phonebook['upsorn'] = '222-2222"

print (phonebook)

{'upsorn': '222-2222", '333-3333"}

Exercise from Slides my answer:

experience = {}

def add experience (times) :

global experience
for i in range (times) :

place = input ("Where did you work? ")

year = int (input ("What year were you working there? "))

job = input ("What was your position? ")

experience[year] =

[job, place]

times = int (input ("How many jobs have you worked?"))

add _experience (times)
print (experience)

Exercise from Slides class answer:

def record experience():

experience = {}
more input = 'y'
while (more input == "y"):

company = input ("Enter company: ")
year = input ("Enter year: ")
name = input ("Enter experience: ")

experience[year] = [name, company]
more input = input ("Do you want to enter more? (y/n) ")
return experience
print (record experience())

