Gamebox Intro
(If you haven't installed it, do so, because the rest of the class is on it)
Grades released early next week (most likely)
We use pygame to view our game (like turtle, at beginning of class)
Tychonievich wrote “gamebox”, which makes it easier to use pygame
Since it’s not universal, get info on gamebox pygame from:
http://www.cs.virginia.edu/~up3f/cs1110/supplement/gamebox-overview.html
Don’t create files titled “pygame” or “gamebox”, or your computer will import that file instead
Two game assignments:
One small game, submitted as homework individually
One large game, with your lab partner submitted as a final project
Example games are provided, but if you just modify those, you will not do well
http://cs1110.cs.virginia.edu/code/gamebox/

A blank game without a timer:

import pygame
import gamebox
to make it run
camera = gamebox.Camera (800, 600)
the screen we display to the player
def tick(keys):
mrrn
This is where the game goes
:param keys: recognizes what the user does with the arrow keys
:return: doesn't return, is actively running

mrn

camera.display ()

n

make that screen appear
ticks per second = 30

controls the "lag'", how many times we refresh pe

N
%)
0]
9]
O
S
Q

30 is almost always a god amount
gamebox.timer loop (ticks per second, tick)

actually runs the game

A blank game with a timer:

import pygame
import gamebox
to make it run
camera = gamebox.Camera (800, 600)
the screen we display to the player
time = 0
start the timer at zero
def tick(keys):
mrrmn
This is where the game goes
:param keys: recognizes what the user does with the arrow keys

:return: doesn't return, is actively running

(most likely)

mren

global time

so we can access what's outside the function

time += 1

time goes up every time tick runs, ie 30 times per second

camera.clear ("pink")

gets rid of the last screen displayed before we display a new one

also changes the color of our screen, I find pink relaxing

frac = str(int((time%ticks_per_second)/ticks_per_second*lO))

fractions of a second as a string

seconds = str(int((time/ticks per second)%60)).z£fill(2)

.zfill (2) makes it always two digits, so if we have "5" it does "05" or if we
have "0" it does "00"

minutes = str(int((time/ticks_per_second)/60))

timer = gamebox.from text (400, 300, minutes + ":" + seconds + "." + frac,
"Arial", 24, "black")

a function that defines a string to display on the screen

camera.draw (timer)

displays our concatenated timer string at (400, 300) in Arial 24pt font in
black (shows well against pink)

I put it in the middle but the example code has it at (50, 100), the top left

camera.display ()

make that screen appear
ticks per second = 30
controls the "lag'", how many times we refresh per second
30 is almost always a god amount
gamebox.timer loop (ticks per second, tick)
actually runs the game

A blank game with a timer and a character:
import pygame
import gamebox
to make it run
camera = gamebox.Camera (800, 600)
the screen we display to the player
character = gamebox.from color (camera.x, camera.y, "purple", 20, 20)
defines a little guy at (camera.x, camera.y) adjustable coordinates in purple 20
pixels tall by 20 pixels wide
1f we don't specify, camera.x and camera.y default to the middle
time = 0
start the timer at zero
def tick(keys):
i
This is where the game goes
:param keys: recognizes what the user does with the keyboard
:return: doesn't return, is actively running
global time
so we can access what's outside the function
time += 1

time goes up every time tick runs, ie 30 times per second
camera.clear ("pink")
gets rid of the last screen displayed before we display a new one
also changes the color of our screen, I find pink relaxing
frac = str(int((time%ticks per second)/ticks per second*10))
fractions of a second as a string
seconds = str(int((time/ticks per second)%$60)).z£fill(2)
.zfill(2) makes it always two digits, so if we have "5" it does "05" or if we
have "0" it does "00"
minutes = str(int((time/ticks per second)/60))
timer = gamebox.from text (400, 300, minutes + ":" + seconds + "." + frac,
"Arial", 24, "black")
a function that defines a string to display on the screen
if pygame.K RIGHT in keys:
if they press the right arrow
character.x += 5
moves the guy to the right 5 pixels
if pygame.K LEFT in keys:
character.x -= 5
if pygame.K UP in keys:
we can do it up and down, but the coordinates are reverse, 1idk why
character.y -= 5
if pygame.K DOWN in keys:
character.y += 5
camera.draw (timer)
displays our concatenated timer string at (400, 300) in Arial 24pt font in
black (shows well against pink)
I put it in the middle but the example code has it at (50, 100), the top left
camera.draw (character)
camera.display()
make that screen appear
ticks per second = 30
controls the "lag'", how many times we refresh per second
30 is almost always a god amount
gamebox.timer loop (ticks per second, tick)

actually runs the game

Fiddle with these, try to make some games and figure out how the example games work

Have fun playing with gamebox and creating some game !

Have fun playing with gamebox and creating some game !

