Regular Expressions (Not Gamebox :()
***If there’s anything Upsorn can do to help prep for the final, send her an email
***Just don’t ask what the questions will be--anything else, she’s looking to see what we need and
what we want to work on
Useful when we don’t have well-structured data
Let’s us recognize patterns, what the data represents, etc
If we are looking for phone numbers, we can grab anything formatted +1 (###) ##H# - #HHH
Very specific symbols for “regular expressions” (patterns) recognized by computer, in slides
An incomplete table of these symbols:
Note: the square bracket means “any one of the things in here”, like a visual “or”

Syntax What it means

[abc] Either “a@” or “b” or “c”

[a-Z] Any lowercase letter
[a-z0-9] Any lowercase letter or digit

Any single character

\. A period (same escape as in\" and \”)

Everything (“0 to many”)

? Either O or 1 (see exercise)

+ Everything but 0 (“1 to many”)

We use these ‘regular expressions’ both to find data of a specific format and to verify that our data
is of a specific format we are looking for
CSV-files are “structured”, which makes them easy to work with; not everything is like that
Start regular expressions with “r’, meaning “raw data”, signalling to the computer to compile the
data before reading it (otherwise it'll get confused)
Next, put the pattern we are looking for in quotes
Regular expressions are used alongside the “re” library, must be imported
Next, we must compile the expression we are looking for
We actually don’t always need to compile, but it nevers hurts to, so we’ll just always do it
Things regex can do:
regex.search(text) returns the first occurrence of that object
regex.findall(text) returns every occurrence of that object
Once we find the object, it will look weird, and it comes with functions
object_name.group() shows us the string that matched
object_name.start() shows us the index of the first character
object_name.end() shows us the index of the last one

To watch our regular expressions grab data (and thus practice writing them), go to
http://regexr.com/

An exercise which uses the Simpsons’ phonebook
(http://www.cs.virginia.edu/~up3f/cs1110/practice-of-the-day/simpsons phone book.txt):

always import to start

import re

a phone number takes the form digit, digit, digit, dash, digit, digit, digit,
digit

in a regular expression, that looks like r"[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]"
each time we write [0-9], we are saying "any single digit between 0 and 9,

inclusive”

there's a problem: sometimes, it starts with four digits

putting a question mark after it says, if it's there, take it, if it's not
there, no problem

it's either there 0 times or 1 time

new expression r"[0-9]?[0-9][0-9][0-9]-[0-9][0-9][0-9] [0-9]"

in function form
def find all phone numbers (filename, regex):
infile = open(filename, 'r')
for line in infile:
obj = regex.search(line)
find all would also work in this example
we know there's only one number on each line, but if we didn't, we'd need
to use .findall()
if obj != None:
print (obj, obj.group(), obj.start(), obj.end())
this prints a mess!!!
obj.group() is the part that gave us what we want, just the phone
number
call the function for our file and expression
find_all_phone_ numbers ("simpsons_phone_book",
re.compile (x"[0-9]?[0-9] [0-9] [0-9]-[0-9] [0-9][0-9][0-9]1™))

