Regex Cont

***don’t forget to fill out the conflict form if you have a conflict

***Lots of regex tips here: https://cs1110.cs.virginia.edu/re-tips.html

One more practice of the day (http://www.cs.virginia.edu/~up3f/cs1110/practice-of-the-day/):
(19)

Answer the following questions

(review basic concepts)

1. What would be the value of the variable nums after
the execution of the following code?

nums = [1, 2, 3, 4]

nums [3] = 10

index 3 is the last one
now nums = [1, 2, 3, 10]
print (nums)

prints [1, 2, 3, 10]

2. What is the value of val in the following expression
if x =4, vy =3, and z = 6

Il
o W o

val = x < y or z > X

x < y is False

z > x 1is True

False or True is True
print(val)

print True

3. True/False: If a whole paragraph is included in a single string,

the split () method can be used to obtain a list of the words

included in the paragraph

True -- as long as every word 1is separated by a space. You might also want to

strip it first

4. When executed, what is output by the following code fragment?

def funcl(x, v):
x[0] = 2
y = 2"

x = [1]

y = "1"

funcl (x, vy)

funcl ([1], "1")
change [1] to [2]
this happens globally
change "1" to "2"

HH W FHw H H

this happens locally
print(x, vy)
print [2], "1"

5. What is the output of the following code?

greeting = "Hello, World!"

sub = greeting[:5] + greeting[7:len(greeting)-1]
greeting[:5] is "Hello"

greeting[7:1en(greeting)-1] is "World"

concatenated without a space

print (sub)

print "HelloWorld"

Final 1list of things we printed to check against:
(1, 2, 3, 10]

True

[2] 1

HelloWorld

HH ¥ I R W

H=

if you run it, you can see that this is what gets printed
1f anything doesn't make sense, watch it in Visualize Python

We can put repetition in regex statements inside curly brackets immediately following the
character we expect to recur

If the number of occurrences could be within a range, {first_possibility, last_possibility}
import re at least at most

def find all phone numbers (filename, regex):
infile = open(filename, 'r'")
for line in infile:
obj = regex.search (line)
if obj != None:
print (obj, obj.group(), obj.start(), obj.end())
infile.close()
regex = re.compile(r"[0-9]?[0-9][0-9][0-9]1-[0-9][0-9][0-9][0-9]1")
this is a very simple regular expression, describing a sequence of a pattern
it's also very long and repetitive--we can improve it
let's use {n} for our repetitions ‘/,,exacﬂy4tnnes
new regex = re.compile(x"[0-9]12[0-9]{3}-[0-9]{4}")
let's improve it even more
put the ambiguity in the number of repetitions, rather than a single ambiguous
occurence followed by three guaranteed ones
newest regex = re.compile(r"[0-9]{3,4}-[0-9]{4}")

at least

at most

exactly 4 times

find all phone numbers ("simpsons_phone book", newest regex)

One more useful function distinction: search() vs match():

import re

def search phone numbers(filename, regex):

returns the first occurrence of the pattern in each line
infile = open(filename, 'r')
for line in infile:
obj = regex.search(line)
if obj != None:
print (obj, obj.group(), obj.start(), obj.end())

infile.close()

def match phone numbers (filename, regex):

returns only if the line begins with the regular expression
infile = open(filename, 'r')
for line in infile:
obj = regex.match (line)
if obj != None:
print (obj, obj.group(), obj.start(), obj.end())

infile.close()

newest regex = re.compile(r"[0-9]{3,4}-[0-9]{4}")
search phone numbers ("simpsons phone book", newest regex)
match_phone numbers ("simpsons_phone book", newest_regex)

Run this file to see the difference (don’t forget to download the phonebook)
An example of a regex including * (0 to many):

import re

def find all phone numbers(filename, regex):
infile = open(filename, 'r')
for line in infile:
obj = regex.search(line)
if obj != None:
print (obj, obj.group(), obj.start(), obj.end())
infile.close()
a regex for anyone whose first name starts with "J" and last name is "Neu"
regex = re.compile (r"J.*Neu")
find all phone numbers ("simpsons phone book", regex)

T

1f we switch it to match, we only get names whose lines start with J

Unlike search and match, findall returns a single list of each object as a string, but not the extra
info:

import re

def find all phone numbers(filename, regex):
infile = open(filename, 'r')
for line in infile:
obj = regex.findall (line)
for obj in objs:
print (obj)
infile.close()

a regex for anyone whose first name starts with "J" and last name is '"Neu"
regex = re.compile (r"J.*Neu")
find_all_phone numbers ("simpsons_phone_book", regex)
Finditer() is similar to findall(), but returns all of the info as a list of lists:
def finditer (filename, regex):

I

returns any time regex appears regardless of environment
infile = open(filename, 'r')
for line in infile:
obj = regex.finditer (line)
for obj in objs:
print (obj, obj.group(), obj.start(), obj.end())
infile.close()

Back to regular expression syntax; a new way to write a regex, and grouping:
import re
regex = re.compile(r"[0-9]{3,4}-[0-9]{4}")
[0-9] could also be written as /d for 'digit'
new _regex = re.compile (r" (\d{3,4})-(\d{4})")
using parentheses defines groups, which are indexed and can later be called
they start at 1, rather than 0
so here, i1f we find a matched object obj
the part that matches \d{3,4} is obj.group (1)
and the part that matches \d{4} is obj.group (2)
Useful if we want to print only part of the match, or to change to formatting of the data when
printing it
In terms of phone numbers, we don’t have to write “555-5555"
Could write “555 5555” or “5555 555” or “5555-555" or a lot of things

Because .findall() returns strings, we can’t use obj.group() with it

