
CS1111 – University of Virginia 1© Praphamontripong

Functions
CS 1111

Introduction to Programming

Spring 2019

[The Coder’s Apprentice, §5, §8-8.3]
Based in part on “Agnostic Programming: Learning to Design and Test Basic Programming Algorithms” 

by Kinga Dobolyi, Kindle]



CS1111 – University of Virginia 2© Praphamontripong

Let’s order Big Mac

order Big Mac

Call a function make_bigmac()

return a Big Mac

function make_bigmac()
Do action when it is called

How many times can we order a Big Mac?

Do we want a make_bigmac() to give us back a Big Mac or just show us? 
return print

Purpose, input, output

Must exist before calling



CS1111 – University of Virginia 3© Praphamontripong

Overview: Functions
• What are functions? 

• Why use functions

• Defining and calling functions

• Void function and value-returning function

• return versus print in functions

• Tracing through functions 



CS1111 – University of Virginia 4© Praphamontripong

What are Functions?
• Groups of statements the exist within a program for 
the purpose of performing a specific task [Gaddis]

statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement

One long, complex sequence of 
statements

def function1():
statement
statement
statement

def function2():
statement
statement
statement

def function3():
statement
statement
statement

Each small task is performed by a 
separate function

Divide the task into 
smaller or sub tasks



CS1111 – University of Virginia 5© Praphamontripong

Why use Functions
• Code reuse

• Allow code to be reused with some modification through 
parameters

• Readability 
• Organize code based on “what” it does; e.g., make_bigmac(), 

load_file(file) and compute_gpa(scores)

• Make code simpler and easier to understand
• Note: use informative / descriptive names

• Maintainability
• Make code easier to isolate, fix, and update

• Testing
• Verify one functionality at a time, easier to isolate and fix errors



CS1111 – University of Virginia 6© Praphamontripong

• def is a keyword to define a function, ends in a colon
• Must name the function 
• Specify arguments (optional)
• Provide the body of the function (everything indented belongs to 
the function)

• Function can be called, with arguments, after declared
• Call a previously defined function by its name
• Pass in values for the arguments

Defining and Calling Functions
def add(num1, num2):

print("I am adding " + str(num1) + " and " + str(num2))
return (num1 + num2)

add(2, 3)
print(add(4, 5))
print(add(1, -1))

Main

num1

add

num2

2

3

num1

add

num2

4

5

num1

add

num2

1

-1



CS1111 – University of Virginia 7© Praphamontripong

Void and Value-Returning Functions

def add(num1, num2):
print("I am adding " + str(num1) + " and " + str(num2))
return (num1 + num2)

def add(num1, num2):
print("I am adding " + str(num1) + " and " + str(num2))

Value-Returning function

add(2, 3)
print(add(4, 5))
print(add(1, -1))

Void function

Main



CS1111 – University of Virginia 8© Praphamontripong

Return versus Print
• return statement is optional

• Only first return statement reached gets run
• If no return statement, function returns None

• A return statement ceases execution of a function and 
returns a value
• At most one (the first) return statement that is reached during a 

particular function call is executed 

• A function can return value(s), specified by the first return 
statement that is executed

• All print statements reached by the function are executed; 
they are printed to the screen

• A return value is not printed, unless a function is printed
• print(add(2, 3))



CS1111 – University of Virginia 9© Praphamontripong

Tracing through Code with Functions
• Rule 1

• Variables and items on the heap are stored in separate locations.

• Rule 2
• A primitive type is stored directly with its variable.
• A complex type has its variable store a memory address.

• A memory address refers to a location on the heap where the 
actual data is stored.

• Rule 3
• Every assignment begins by either creating a variable space 

(and heap location, if necessary), or emptying out the existing 
contents of a variable space (but not the heap!). 

• Copying either a value or memory address from one box into the 
other. 

• A variable or memory location must only store either 
numbers/booleans, or a memory address, never the name of a 
variable.



CS1111 – University of Virginia 10© Praphamontripong

Tracing through Code with Functions
• Rule 4: 

There are seven steps for every function call: 

1. Make space for the function.

2. Look at the function definition and make space for its 
argument.

3. Copy the values from the function call into the space created 
in (2). Remember these are assignments.

4. Complete the body of the function. Remember to only refer to 
variables local to the function you crated in (1).

5. Circle the return value; if no return value, circle None (to 
remind you there is no value to be sent back). 

6. Cross out all local variables (except the return) to remind you 
they will disappear; however, to NOT touch the heap!

7. Cross out the function call and replace it with the value circled 
in (5). 



CS1111 – University of Virginia 11© Praphamontripong

Tracing through Code with Functions
• Rule 5

• Only a print statement generates output (a return statement 
does not).

• Rule 6
• Continued from Rule 3, the left hand side of an assignment must 

simplify to a location in memory in order to make the 
assignment. The right hand side must simplify to either a 
constant (like a number of True/False) or memory address (for 
complex types like lists).



CS1111 – University of Virginia 12© Praphamontripong

Extra slides



CS1111 – University of Virginia 13© Praphamontripong

Example: Tracing through Code 
def foo(list1, num, ages):

num = 3
if len(list1) < 3:

return 4
list1.append(6)
ages = [22]
print(ages)
return 7

num = 5
things = [3, 4, 5]
other = [4]
foo(things, num, other)
print(num)
print(things)
print(other)
things.remove(4)
things.remove(6)
foo(things, num, other)
result = foo(things, num, other)
print(result)

Heap
A100

foo

Main

Main
num

things

5

3

4

0
1
2 5

A100

other

A200

0 4

A200

list1

num

A100

5

ages A200

3

3 6

A300

0 22

A300

[22]

7

7



CS1111 – University of Virginia 14© Praphamontripong

Example: Tracing through Code (2)
def foo(list1, num, ages):

num = 3
if len(list1) < 3:

return 4
list1.append(6)
ages = [22]
print(ages)
return 7

num = 5
things = [3, 4, 5]
other = [4]
foo(things, num, other)
print(num)
print(things)
print(other)
things.remove(4)
things.remove(6)
foo(things, num, other)
result = foo(things, num, other)
print(result)

Heap
A100

Main
num

things

5

3

4

0
1
2 5

A100

other

A200

0 4

A200

3 6

A300

0 22

[22]

7

5
[3, 4, 5, 6]
[4]



CS1111 – University of Virginia 15© Praphamontripong

Example: Tracing through Code (3)
def foo(list1, num, ages):

num = 3
if len(list1) < 3:

return 4
list1.append(6)
ages = [22]
print(ages)
return 7

num = 5
things = [3, 4, 5]
other = [4]
foo(things, num, other)
print(num)
print(things)
print(other)
things.remove(4)
things.remove(6)
foo(things, num, other)
result = foo(things, num, other)
print(result)

Heap
A100

Main
num

things

5

3

5

0
1
2 6

A100

other

A200

0 4

A200
A300

0 22

[22]

7

5
[3, 4, 5, 6]
[4]



CS1111 – University of Virginia 16© Praphamontripong

Example: Tracing through Code (4)
def foo(list1, num, ages):

num = 3
if len(list1) < 3:

return 4
list1.append(6)
ages = [22]
print(ages)
return 7

num = 5
things = [3, 4, 5]
other = [4]
foo(things, num, other)
print(num)
print(things)
print(other)
things.remove(4)
things.remove(6)
foo(things, num, other)
result = foo(things, num, other)
print(result)

Heap
A100

Main
num

things

5

3

5

0
1

A100

other

A200

0 4

A200
A300

0 22

[22]

7

5
[3, 4, 5, 6]
[4]

foo
list1

num

A100

5

ages A200

3

4

4



CS1111 – University of Virginia 17© Praphamontripong

Example: Tracing through Code (5)
def foo(list1, num, ages):

num = 3
if len(list1) < 3:

return 4
list1.append(6)
ages = [22]
print(ages)
return 7

num = 5
things = [3, 4, 5]
other = [4]
foo(things, num, other)
print(num)
print(things)
print(other)
things.remove(4)
things.remove(6)
foo(things, num, other)
result = foo(things, num, other)
print(result)

Heap
A100

Main
num

things

5

3

5

0
1

A100

other

A200

0 4

A200
A300

0 22

[22]

7

5
[3, 4, 5, 6]
[4]

foo
list1

num

A100

5

ages A200

3

4

4

result

4

4

4


