More Functions

CS 1111
Introduction to Programming

Spring 2019

[The Coder’s Apprentice, §5, §8-8.3]

Based in part on “Agnostic Programming: Learning to Design and Test Basic Programming Algorithms”
by Kinga Dobolyi, Kindle]

CS1111 — University of Virginia © Praphamontripong

Review

Function

Function = a block of code that can be called by other
statements

To define a function

def function name(paraml, param2, ..):

To call a function

function name(argl, arg2, ..)

Indent statements inside the function

CS1111 — University of Virginia © Praphamontripong

Review

Print versus Return

Print Return
All print statements A return statement is
reached by the function optional

are executed Only the first return

They are printed to the statement reached gets run

screen
If no return statement,

After a print statement is function returns None

executed, the execution A return ceases execution of
proceeds to the next a function and returns a
statement value

A return value is not printed,
unless a function is printed

CS1111 — University of Virginia © Praphamontripong

Review

Void vs. Value-Returning Functions

Void functions Value-Return functions
Does not return anything return something
None in Python
Examples
Examples abs (some number)
print(str) random.randint (0, 100)
random.seed(seed) random.sample(some list)

random.shuffle()

(We will talk about random module later)

CS1111 — University of Virginia © Praphamontripong

Pass by Value

my_value g 11

def change_a_value(some_value):
print("Inside change_a_value(), some_value starts as: ", some_value)

some_value *=2
print("some_value now is: ", some_value)

print("Starting the program, my_value starts as: ", my_value)

change_a_value(my_value)
print("my_value now is still: ", my_value)

Passing immutable types to a function.

A copy of the variable (value and everything) is sent to
the function.

Changes made to the variable passed in are not
reflected back where the function was called.

CS1111 — University of Virginia © Praphamontripong

Pass by Reference

my_list g ['a’, 'b’, 'c’, 'd']

def change_a_ref(some_list):
print("Inside change_a_ref(), some_list starts as: ", some_list)
some_list.append('x’)
print("some_list now is:", some_list)

print("Starting the program, my_list starts as: ", my_list)
change_a_ref(my_list)
print("my_list now is:", my_list)

Passing mutable types to a function.

A copy of the memory address of the object, is sent to
the function.

Changes made to the variable passed in are reflected
back where the function was called.

CS1111 — University of Virginia © Praphamontripong

Guideline: Tracing
_ th ro ugh COde Pass by value - copy of actual value

Pass by reference = copy of the memory address

Rule 1: | Variables and items on the heap are stored in separate locations
Rule 2: A primitive type is stored directly with its variable; a complex type (such as a list) has its variable store a memory address, and that
" |memory address refers to a location on the heap where the actual data lives.
Every assignment begins by either creating a variable space (and heap location, if necessary), or emptying out the existing contents
Rule 3: |of a variable space (but NOT the heap!), and then copying either a value or memory address from one box into the other. A variable
or memory location must only store either numbers/booleans, or a memory address, NEVER the name of a variable.
1. Make space for the function.
2. Look at the function definition and make space for its arguments (if any).
3. Copy the values from the function call into the space created in (2). Remember these are assignments (see the rules
Rule 4: from the previous chapter for how to handle assignments).
4. Complete the body of the function. Remember to only refer to variables local to the function you created in (1).
5. Circle the return value; if no return value, circle None (in Python).
6. Cross out all local variables (except the return) to remind you they will disappear; however, to NOT touch the heap!
7. Cross out the function call and replace it with the value circled in (5).
Rule 5: |Only a print statement generates output (a return statement does not).
Continued from Rule 3, the left hand side of an assignment must simplify to a location in memory in order to make the
Rule 6: |assignment. The right hand side must simplify to either a constant (like a number or True/False) or memory address (for
complex types like lists).

Based in part on “Agnostic Programming: Learning to Design and Test Basic Programming Algorithms” by Kinga Dobolyi, Kindle]

Example: Tracing through Code

—> def foo(list1, num, ages): Heap foo \ /
:>> ir}ulrgnaigﬂ) < 3: AlO0 <~ LR
return 4 of 3 um | - <
—> | list1.append(6) 11 4 —> ages | A3RQ0
—> | ages = [22] /
—> | print(ages) 2 > @
—> | return 7 3 6
Main
—> num =95 !
—> things = [3, 4, 5] A200 Main
—> other = [4] 0 4 num 5 <
—> foetthings—urother- 7 i
print(num) A300 things | A199
print(things) other |A200
print(other) 0 22

things.remove(4)
things.remove(6)

foo(things, num, other)

result = foo(things, num, other)
print(result)

[22]

Alist in this example is to demonstrate complex data type
and passing by reference. Do not worry about list for now.
We will discuss list in detail after exam1

CS1111 — University of Virginia © Praphamontripong

Example: Tracing through Code (2)

def foo(list1, num, ages): Heap

num = 3

if len(list) < 3: —> Al0O

return 4 0 3

list1.append(6) T—_

ages = [22]

print(ages) 2 >

return 7 3 6
num =5 -
things = [3, 4, 9] —> A200 Main
other = [4] 4 —> num 5

foofthingsfurother— 7

—> print(num)

—> print(things)

—> print(other)

—> things.remove(4)
things.remove(6)
foo(things, num, other)
result = foo(things, num, other) [3,4,5,6]
print(result) [4]

—>things | A100
—> other | A200

CS1111 — University of Virginia © Praphamontripong

Example: Tracing through Code (3)

def foo(list1, num, ages): Heap
num = 3
if len(list1) < 3: —> Al0O
return 4 o 3
list1.append(6) 1 5
ages = [22]
print(ages) — I

return 7

num =95 :
things = [3, 4, 5] A200 Main
other = [4] 0 4 num 5
footthtrgshurm—other)— 7 .
pr?nt(nqm) 300 —>things | AI00
print(things) other | A200
print(other) 0 22
things.remove(4)

—> things.remove(6) [22]
foo(things, num, other) 5
result = foo(things, num, other) [3,4,5,6]
print(result) [4]

CS1111 — University of Virginia © Praphamontripong

Example: Tracing through Code (4)

def foo(list1, num, ages): Heap foo \ /
—> | num =3 ' ANO
—s | if len(list1) < 3: Al00 e
—> return 4 0| 3 num | —-
list1.append(6) 1 5 ages 0
ages = [22] / \
print(ages) @
return 7
num = 5 i
things = [3, 4, 5] A200 Main
other = [4] 0 4 —> num | >
feetthtrgs—rurm—other— 7 :
print(num) £300 —>things | A100
print(things) —> other | A200
print(other) 0 22
things.remove(4)
things.remove(6) [22]
—> foofthings—rurm—other- 4 5
result = foo(things, num, other) [3,4,5,6]
print(result) [4]

CS1111 — University of Virginia © Praphamontripong

Example: Tracing through Code (5)

—> def foo(list1, num, ages): Heap

—> | num =3

—> | if len(list1) < 3: Al00
— return 4 0 3
list1.append(6) 1 5
ages = [22]
print(ages)
return 7

num =5 _
things = [3, 4, 5] A200 Main
other = [4] 0 4 — s num 5
foofthings—hum—other 7

print(num)
print(things) A300 other | A200

print(other) 0 22
things.remove(4)
things.remove(6) [22]
foetthings—rurm—other- 4 5
—> result = feefthings—rum—ether) 4 Bf’]
4

—> print(result)

—>things | A100

result 4

CS1111 — University of Virginia © Praphamontripong

Calling Functions from Functions

— def main():

— print('The sum of 12 and 45 is ')
— show_sum(lZ\,{4K

— def show_sum(numl, num?2):

— result = numl + num2

— print(result)

— main()

The sumof12and 45is
57

CS1111 — University of Virginia © Praphamontripong

More Example: Tracing through Code
with multiple function

—> def function1(num1):
—> |num1 =2

—> print(num1) AN ,
—> return num1 num< 2 —> numf
—> def function2(num1, num2): / \ num?2

—_ —— 2 i g

—> prinf(num1 |+ num?2)
" ©,

—> def other(num1, numz2):
num1 = function1(num1)
print(num1)

function1 function2

Main
—> numil =7
) 'FI Inl\t:f\n’- /Y\I Im4 % none

TUTTOULTUT TG T TUTT T,

print(other(num1, 5))

Main

—> num1 7

CS1111 — University of Virginia © Praphamontripong

More Example: Tracing through Code
with multiple function

—> def function1(num1):
—> numl =2

print(num1) N\ /
return num1 num v —> num1
def function2(num1, num2): / \ num?2

function1(num1)

print(num1 + numz2) @
—> def other(num1, num2):
—> num1 = ' 2

—> print(hum1)
Main
num1 =7
function2(num1, 5)

— print&et-he@-a} none —> numt | 7

function1 other

Main

CS1111 — University of Virginia © Praphamontripong

Importing Existing Functions

Assuming the add () function and other functions are saved
in a file called math lib.py (= module’s name is math 1ib)

Import module name OrF From module name import *

allows us to import all functions from math 1lib.py into the
current file

Call functions from other files
Can use add () without defining it here

import math_lib — Put at the top of — from math_lib import *
the current file

math_lib.add(2, 3) add(2, 3)

print(math_lib.add(4, 5)) print(add(4, 5))

print(math_lib.add(1, -1)) print(add(1, -1))

Python imports some standard functions, such as str() and
len() automatically; others need the import statement

CS1111 — University of Virginia © Praphamontripong

Local and Global Variables

Local variables

Arguments and any variables declared in the function
Cannot be seen by other functions or code

Even if they have the same name as variables outside the
function, the computer treats them as different (think of two
people both named Tom; they are different people though they
happen to be named the same)

Each function call has its own memory space and variables
These local data disappear when the function finishes

Arguments are assigned from the function call

Global variables
Is accessible to all the functions in a program file

CS1111 — University of Virginia © Praphamontripong

Local Variables

number = 0 <

def main():
number = int(input('Enter a number: "))

show_number()

def show_number():
print('The number you entered is ', humber)

main()

Enter a number: 7
The numberyou entered is 0

CS1111 — University of Virginia © Praphamontripong

Global Variables

number = 0 T
def main():
global number |

number = int(input('Enter a number: "))
show_number()

def show_number():
print('The number you entered is ', number)

main()

Enter a number: 7
The numberyou entered is 7

CS1111 — University of Virginia © Praphamontripong

