
CS1111 – University of Virginia 1© Praphamontripong

More Functions
CS 1111

Introduction to Programming

Spring 2019

[The Coder’s Apprentice, §5, §8-8.3]
Based in part on “Agnostic Programming: Learning to Design and Test Basic Programming Algorithms”

by Kinga Dobolyi, Kindle]

CS1111 – University of Virginia 2© Praphamontripong

Function
• Function = a block of code that can be called by other
statements

• To define a function

def function_name(param1, param2, …):

• To call a function

function_name(arg1, arg2, …)

• Indent statements inside the function

Review

CS1111 – University of Virginia 3© Praphamontripong

Print versus Return
Print

• All print statements
reached by the function
are executed

• They are printed to the
screen

• After a print statement is
executed, the execution
proceeds to the next
statement

Review

Return

• A return statement is
optional

• Only the first return
statement reached gets run

• If no return statement,
function returns None

• A return ceases execution of
a function and returns a
value

• A return value is not printed,
unless a function is printed

CS1111 – University of Virginia 4© Praphamontripong

Void vs. Value-Returning Functions
Void functions

• Does not return anything
• None in Python

• Examples
• print(str)
• random.seed(seed)
• random.shuffle()

Review

Value-Return functions

• return something

• Examples
• abs(some_number)
• random.randint(0, 100)
• random.sample(some_list)

(We will talk about random module later)

CS1111 – University of Virginia 5© Praphamontripong

Pass by Value
my_value = 11

def change_a_value(some_value):
print("Inside change_a_value(), some_value starts as: ", some_value)
some_value *=2
print("some_value now is: ", some_value)

print("Starting the program, my_value starts as: ", my_value)
change_a_value(my_value)
print("my_value now is still: ", my_value)

• Passing immutable types to a function.
• A copy of the variable (value and everything) is sent to
the function.

• Changes made to the variable passed in are not
reflected back where the function was called.

CS1111 – University of Virginia 6© Praphamontripong

Pass by Reference
my_list = ['a', 'b', 'c', 'd']

def change_a_ref(some_list):
print("Inside change_a_ref(), some_list starts as: ", some_list)
some_list.append('x')
print("some_list now is:", some_list)

print("Starting the program, my_list starts as: ", my_list)
change_a_ref(my_list)
print("my_list now is:", my_list)

• Passing mutable types to a function.
• A copy of the memory address of the object, is sent to
the function.

• Changes made to the variable passed in are reflected
back where the function was called.

CS1111 – University of Virginia 7© Praphamontripong

Tracing through Code with
Functions

seven steps for every function call:

[Based on part of Kinga Dobolyi, “Agnostic Programming: Learning to Design and Test Basic Programming Algorithms,” Kindle]Based in part on “Agnostic Programming: Learning to Design and Test Basic Programming Algorithms” by Kinga Dobolyi, Kindle]

Pass by value à copy of actual value
Pass by reference à copy of the memory address

Guideline: Tracing
through code

CS1111 – University of Virginia 8© Praphamontripong

Example: Tracing through Code
def foo(list1, num, ages):

num = 3
if len(list1) < 3:

return 4
list1.append(6)
ages = [22]
print(ages)
return 7

num = 5
things = [3, 4, 5]
other = [4]
foo(things, num, other)
print(num)
print(things)
print(other)
things.remove(4)
things.remove(6)
foo(things, num, other)
result = foo(things, num, other)
print(result)

Heap
A100

foo

Main

Main
num

things

5

3

4

0
1
2 5

A100

other

A200

0 4

A200

list1

num

A100

5

ages A200

3

3 6

A300

0 22

A300

[22]

7

7

A list in this example is to demonstrate complex data type
and passing by reference. Do not worry about list for now.
We will discuss list in detail after exam1

CS1111 – University of Virginia 9© Praphamontripong

Example: Tracing through Code (2)
def foo(list1, num, ages):

num = 3
if len(list1) < 3:

return 4
list1.append(6)
ages = [22]
print(ages)
return 7

num = 5
things = [3, 4, 5]
other = [4]
foo(things, num, other)
print(num)
print(things)
print(other)
things.remove(4)
things.remove(6)
foo(things, num, other)
result = foo(things, num, other)
print(result)

Heap
A100

Main
num

things

5

3

4

0
1
2 5

A100

other

A200

0 4

A200

3 6

A300

0 22

[22]

7

5
[3, 4, 5, 6]
[4]

CS1111 – University of Virginia 10© Praphamontripong

Example: Tracing through Code (3)
def foo(list1, num, ages):

num = 3
if len(list1) < 3:

return 4
list1.append(6)
ages = [22]
print(ages)
return 7

num = 5
things = [3, 4, 5]
other = [4]
foo(things, num, other)
print(num)
print(things)
print(other)
things.remove(4)
things.remove(6)
foo(things, num, other)
result = foo(things, num, other)
print(result)

Heap
A100

Main
num

things

5

3

5

0
1
2 6

A100

other

A200

0 4

A200
A300

0 22

[22]

7

5
[3, 4, 5, 6]
[4]

CS1111 – University of Virginia 11© Praphamontripong

Example: Tracing through Code (4)
def foo(list1, num, ages):

num = 3
if len(list1) < 3:

return 4
list1.append(6)
ages = [22]
print(ages)
return 7

num = 5
things = [3, 4, 5]
other = [4]
foo(things, num, other)
print(num)
print(things)
print(other)
things.remove(4)
things.remove(6)
foo(things, num, other)
result = foo(things, num, other)
print(result)

Heap
A100

Main
num

things

5

3

5

0
1

A100

other

A200

0 4

A200
A300

0 22

[22]

7

5
[3, 4, 5, 6]
[4]

foo
list1

num

A100

5

ages A200

3

4

4

CS1111 – University of Virginia 12© Praphamontripong

Example: Tracing through Code (5)
def foo(list1, num, ages):

num = 3
if len(list1) < 3:

return 4
list1.append(6)
ages = [22]
print(ages)
return 7

num = 5
things = [3, 4, 5]
other = [4]
foo(things, num, other)
print(num)
print(things)
print(other)
things.remove(4)
things.remove(6)
foo(things, num, other)
result = foo(things, num, other)
print(result)

Heap
A100

Main
num

things

5

3

5

0
1

A100

other

A200

0 4

A200
A300

0 22

[22]

7

5
[3, 4, 5, 6]
[4]

foo
list1

num

A100

5

ages A200

3

4

4

result

4

4

4

CS1111 – University of Virginia 13© Praphamontripong

Calling Functions from Functions

def main():
print('The sum of 12 and 45 is ')
show_sum(12, 45)

def show_sum(num1, num2):
result = num1 + num2
print(result)

main()

main

num1

show_sum

num2

12

The sum of 12 and 45 is

45

result 57

none

57

CS1111 – University of Virginia 14© Praphamontripong

More Example: Tracing through Code
with multiple function

def function1(num1):
num1 = 2
print(num1)
return num1

def function2(num1, num2):
function1(num1)
print(num1 + num2)

def other(num1, num2):
num1 = function1(num1)
print(num1)

num1 = 7
function2(num1, 5)
print(other(num1, 5))

Main

num1 7

2
12

function2

num1

num2

7

5

2

Main

function1

num1 7 2

2

none

none

7 + 5

CS1111 – University of Virginia 15© Praphamontripong

def function1(num1):
num1 = 2
print(num1)
return num1

def function2(num1, num2):
function1(num1)
print(num1 + num2)

def other(num1, num2):
num1 = function1(num1)
print(num1)

num1 = 7
function2(num1, 5)
print(other(num1, 5))

Main

num1 7

2
12
2
2

other

num1

num2

7

5

2

Main

function1

num1 7 2

2

2

none

none

none

More Example: Tracing through Code
with multiple function

CS1111 – University of Virginia 16© Praphamontripong

Importing Existing Functions
• Assuming the add() function and other functions are saved

in a file called math_lib.py (= module’s name is math_lib)

• Import module_name or From module_name import *
allows us to import all functions from math_lib.py into the
current file

• Call functions from other files
• Can use add() without defining it here

• Python imports some standard functions, such as str() and
len() automatically; others need the import statement

import math_lib

math_lib.add(2, 3)
print(math_lib.add(4, 5))
print(math_lib.add(1, -1))

Put at the top of
the current file

from math_lib import *

add(2, 3)
print(add(4, 5))
print(add(1, -1))

CS1111 – University of Virginia 17© Praphamontripong

Local and Global Variables
• Local variables

• Arguments and any variables declared in the function
• Cannot be seen by other functions or code
• Even if they have the same name as variables outside the

function, the computer treats them as different (think of two
people both named Tom; they are different people though they
happen to be named the same)

• Each function call has its own memory space and variables

• These local data disappear when the function finishes

• Arguments are assigned from the function call

• Global variables
• Is accessible to all the functions in a program file

CS1111 – University of Virginia 18© Praphamontripong

Local Variables
number = 0

def main():
number = int(input('Enter a number: '))
show_number()

def show_number():
print('The number you entered is ', number)

main()

Enter a number: 7
The number you entered is 0

CS1111 – University of Virginia 19© Praphamontripong

Global Variables
number = 0

def main():
global number
number = int(input('Enter a number: '))
show_number()

def show_number():
print('The number you entered is ', number)

main()

Enter a number: 7
The number you entered is 7

