
CS1111 – University of Virginia 1© Praphamontripong

Testing Your Program
CS 1111

Introduction to Programming

Spring 2019

CS1111 – University of Virginia 2© Praphamontripong

Testing and Debugging
• Testing = process of finding input values to check against
a software

• Debugging = process of finding a defect given a failure

Test case consists of test input values and expected results

Test values
(inputs)

Actual
resultsProgram Expected

results
vs.

CS1111 – University of Virginia 3© Praphamontripong

Why do We Test Software?
• Goal of testing

• Not to prove correctness, but to increase our confidence in correctness

• Improve quality

• Reduce overall software development cost (budget, time, and effort)

• Preserve customer satisfaction

• Get good grades in CS 1110/1111 and any programming courses

• What fact does each test try to verify?
• Know what to check and whether the program handles that properly

• Benefits
• You are not biased that your code works
• You will better understand what you need to build
• You will get insights on how to built it

CS1111 – University of Virginia 4© Praphamontripong

An Example in Python
Return index of the first occurrence of a letter in string,
Otherwise, return -1

def get_index_of(string, letter):
index = -1
for i in range(1, len(string)):

if string[i] == letter:
index = i

return index

Test1: inputs “python”, “z”
print(get_index_of("python", "z")) # expected: -1, actual: -1

Test2: inputs “python”, “z”
print(get_index_of("python", "p")) # expected: 0, actual: -1

Defect: Should start at 0, not 1

For simplicity, this example assumes a function accept a letter of size 1

Test1: not reveal a problem (defect)
actual output = expected output

Test2: reveal a problem (defect)
actual output ≠ expected output

CS1111 – University of Virginia 5© Praphamontripong

Testing: Choosing Test Inputs

Focus on input values

1. Identify inputs
• string, letter

2. What input values can be
• string is empty or not
• letter is empty or not
• length of string (0, 1, 2, >2)

Return index of the first occurrence of a letter in string,
Otherwise, return -1

def get_index_of(string, letter):
index = -1
for i in range(1, len(string)):

if string[i] == letter:
index = i

return index

Focus on program functionality

1. Identify inputs
• string, letter

2. What affect program’s functionality
• number of occurrence of letter in string
• letter occurs first in string
• letter occurs last in string

CS1111 – University of Virginia 6© Praphamontripong

Testing: Comparing Results
• Given the test input values, compare the actual results
with the expected results

• If the actual results == expected result, the program
passes the test

• Otherwise, the program fails the test

• The test input valules reflect the characteristics of the input
parameters

• The characteristics of the inputs signify the kinds of defects in
program

• The kinds of defects tell what to fix

CS1111 – University of Virginia 7© Praphamontripong

Debugging
Return index of the first occurrence of a letter in string,
Otherwise, return -1

def get_index_of(string, letter):
index = -1
for i in range(1, len(string)):

check if we get the right character
print(i, string[i])
if string[i] == letter:

index = I
check if the if-code-block is executed
print(string[i], “=”, letter, “i=”, i)

return index

Test1: inputs “python”, “z”
print(get_index_of("python", "z")) # expected: -1, actual: -1

Test2: inputs “python”, “z”
print(get_index_of("python", "p")) # expected: 0, actual: -1

Run Test 1
1 y
2 t
3 h
4 o
5 n
-1

Run Test 2
1 y
2 t
3 h
4 o
5 n
-1

Fix this

CS1111 – University of Virginia 8© Praphamontripong

Summary
Testing

• Choose test values; check if
the program fails (i.e., there
is a problem or “defect” in
the code, which causes the
program to fail)

• Each test value serves a
single purpose (or check for
a certain aspect)

• Check
• Normal cases
• Corner, edge, boundary cases
• Exceptional cases

Debugging

• The program failed; find
where to fix

• Use “print” statement to
ensure changes to the
program variables are correct

• Verify forward: print from
start, move forward until
incorrect values are detected

• Verify backward: print from
the end, move backward until
incorrect values are detected

