
CS1111 – University of Virginia 1© Praphamontripong

Lists
CS 1111

Introduction to Programming

Spring 2019

[The Coder’s Apprentice, §12]

CS1111 – University of Virginia 2© Praphamontripong

Overview: Lists
• List = ordered sequence of values

• Mutable data type

• Because of the ordering, an element in a list can be
referred by its index.

• Indices start at zero

CS1111 – University of Virginia 3© Praphamontripong

Ordered Collection

Collection What it
can hold

Syntax to create Access
element

Mutable
?

string characters “…..” [index] Immutable

range int

range(start, stop, step)

Note: start, stop, step
must be int

[index] Immutable

list anything,
any type [e1, e2, …] [index] Mutable

CS1111 – University of Virginia 4© Praphamontripong

Creating Lists

animals = ['cow', 'dog', 'horse'] # create a new list
print(animals)

animals1 = [] # create an empty list
print(animals)

animals1 = ['cow', 'horse']
animals2 = ['dog']
animals3 = animals1 + animals2 # concatenate lists
print(animals3)

CS1111 – University of Virginia 5© Praphamontripong

in

list = [5, 7, 9, 11, 15]
print(7 in list)
print(3 in list)
print(3 not in list)

in is a keyword and can be used to check if the element
is in the list or string before trying to get its index

CS1111 – University of Virginia 6© Praphamontripong

Accessing Items in Lists
animals = ['cow', 'dog', 'horse'] # create a new list

print(animals[2]) # access a particular item
animals[2] = 'duck' # update a particular item
print(animals[0]) # indices start from zero
print(animals[-1]) # negative numbers start

from the end of the list
print('The ' + animals[0] + ' and the ' + animals[2] + ' sleep in the
barn.')

CS1111 – University of Virginia 7© Praphamontripong

Length of Lists
animals = ['dog', 'cat', 'bird']
counter = 0
while counter < len(animals):

print(animals[counter])
counter = counter + 1

print(animals)

len() returns the length of a list (i.e., the number of
items in a list)

CS1111 – University of Virginia 8© Praphamontripong

Adding Items to Lists
animals = ['cow', 'dog', 'horse'] # create a new list
animals.append('deer') # add item to a list
print(animals[2]) # access a particular item
animals[2] = 'duck' # update a particular item
print(animals[0]) # indices start from zero
print(animals[-1]) # negative numbers start

from the end of the list
print('The ' + animals[0] + ' and the ' + animals[2] + ' sleep in the
barn.')
animals.insert(2, 'pig')
print(animals)

append(element) adds an element to the end of a list,
return None

insert(index, element)adds an element to a
particular position of a list, return None

CS1111 – University of Virginia 9© Praphamontripong

Removing Items from Lists
animals = ['cow', 'dog', 'horse', 'sheep', 'pig']
print(animals)
del animals[3] # remove by index
print(animals)
print(animals.pop()) # remove the last element, and return its value
print(animals.pop(1)) # remove by index, and return its value
print(animals)
animals.remove('horse') # remove by item / element
print(animals)

del deletes an element at a particular position

pop() removes the last element from the list and return its value

pop(index) removes an element at a particular position and
return its value; raise IndexError if an index is out of range

remove(element) removes a particular element, return None;
raise ValueError if an element does not exist

CS1111 – University of Virginia 10© Praphamontripong

Sorting and Reversing
animals = ['cow', 'dog', 'horse', 'sheep', 'pig']
animals.sort()
print('sorted animals =', animals)

another way to print (notice a space after "=")
print('sorted animals = ' + str(animals))

animals.reverse()
print('reversed animals = ', animals)

sort() rearranges the items of a list (in ascending order),
return None

reverse() reverses the order of the items in the list,
return None

CS1111 – University of Virginia 11© Praphamontripong

index(element)

small = [1, 2, 3]

print(small.index(2))

index(element) returns an index of an element,
raise ValueError if an element is not found

Note: You’ll need to check if the element is in the list
before trying to get its index

CS1111 – University of Virginia 12© Praphamontripong

list(collection)

letters = 'ABCDEFG'

print(list(letters))

list(collection) converts a given collection into a list,
return a list

CS1111 – University of Virginia 13© Praphamontripong

Slicing and Returning Part of a List
with [:]

list = [5, 7, 9, 11, 15]
print(list)
print(list[1:4])
print(list[1:])
print(list[:4])
print(list[:-1])

print(type(list[2:4]))

CS1111 – University of Virginia 14© Praphamontripong

How are Lists Represented in
Memory ?

• Primitive types are stored directly
• Complex types (such as lists) are stored indirectly

• Trace through code

• What happens when we assign a variable to a list? (in
memory)

• Only the memory address is assigned; the list is not copied

num = 5
grades = [97, 86, 91, num, 88]
num = 33
big = [23, grades, num, 7]
print(big)
grades[1] = 87
grades.append(6)
big[2] = grades
print(big)

CS1111 – University of Virginia 15© Praphamontripong

Tracing through Code with Lists
• Rule 1

• Variables and items on the heap are stored in separate
locations.

• Rule 2
• A primitive type is stored directly with its variable.

• A complex type has its variable store a memory address.
• A memory address refers to a location on the heap where

the actual data is stored.

• Rule 3
• Every assignment begins by either creating a variable space

(and heap location, if necessary), or emptying out the existing
contents of a variable space (but not the heap!).

• Copying either a value or memory address from one box into
the other.

• A variable or memory location must only store either
numbers/booleans, or a memory address, never the name of a
variable.

CS1111 – University of Virginia 16© Praphamontripong

Tracing through Code with Lists
num = 5
grades = [97, 86, 91, num, 88]
num = 33
big = [23, grades, num, 7]
print(big)
grades[1] = 87
grades.append(6)
big[2] = grades
print(big)
print(grades)

Variables

Heap

num 5

grades A100

A100

0

1

2

3

4

A200

0

1

2

3

97

86

91

5

88

num

5 6

big A200

Output

33 23

A100

33

7

grades

[23, [97, 86, 91, 5, 88], 33, 7]

87

A100

[23, [97, 87, 91, 5, 88, 6],
[97, 87, 91, 5, 88, 6], 7]

num

A100 of 1

A200 of 2

[97, 87, 91, 5, 88, 6]

CS1111 – University of Virginia 17© Praphamontripong

Two Dimensional List (List of Lists)

list1 = [5, 7, 9, 11, 15]
list_of_lists = [['cow', 'horse'], [list], [4, 5, 6]]

print (list_of_lists[0]) # access a particular list
print (list_of_lists[0][1]) # access a particular item

print(len(list_of_lists))
print(len(list_of_lists[1]))

CS1111 – University of Virginia 18© Praphamontripong

Summary
• Must know (based on exam2 topic list, as of

03/04/2019)
• element in lst
• lst.append(value)
• lst.insert(index, value)
• lst.remove(value)
• lst.pop(index)
• lst.sort()
• lst.index(element)
• lst[start:end]
• list(collection)

