
CS1111 – University of Virginia 1© Praphamontripong

Dictionaries
CS 1111

Introduction to Programming

Spring 2019

CS1111 – University of Virginia 2© Praphamontripong

How do Computer Programs Fit in with
the World Around Them?

Thing (object type):
Hotel

Thing (object type):
Car

Thing (object type):
Car

Thing (object type):
Car

CS1111 – University of Virginia 3© Praphamontripong

Objects and Properties
Object type:

Hotel
Properties
Name: Awesome
Rating: 5
Rooms: 70
Bookings: 56
Pool: true
Gym: true

Object type: Car
Properties
Make: UVA1
currentSpeed: 30mph
Color: yellow
Fuel: gasoline Object type: Car

Properties
Make: UVA2
currentSpeed: 20mph
Color: red
Fuel: gasoline

Object type: Car
Properties
Make: UVA2
currentSpeed: 35mph
Color: blue
Fuel: gasoline

CS1111 – University of Virginia 4© Praphamontripong

Overview: Dictionaries
• Dictionary = unordered sequence of data

• Python 3.6 remembers order of items in dictionary

• Mutable data type

• Each element in a dictionary consists of 2 parts:
Key-value pair

• Key = index to locate a specific value
• Deterministic:

• A particular key can only have one value

• Example
• key = currentSpeed, value = 30mph
• key = student ID, value = student name

CS1111 – University of Virginia 5© Praphamontripong

Example: Dictionaries
hotel_dict

key value
Name: Awesome
Rating: 5
Rooms: 70
Bookings: 56
Pool: true
Gym: true

car1_dict
key value

Make: UVA1
currentSpeed: 30mph
Color: yellow
Fuel: gasoline

car2_dict
key value

Make: UVA2
currentSpeed: 20mph
Color: red
Fuel: gasoline

car3_dict
key value

Make: UVA2
currentSpeed: 35mph
Color: blue
Fuel: gasoline

CS1111 – University of Virginia 6© Praphamontripong

Another Example
contact_dict

key value
Name: Theresa
address: 17 Binnacle Ln Qui
phone: 479-4923

[Images from https://en.wikipedia.org/wiki/Telephone_directory]

CS1111 – University of Virginia 7© Praphamontripong

Lists vs. Dictionaries

• Complex type

• Mutable

• Ordered sequence of data

• Index = 0, 1, 2, …

• Complex type

• Mutable

• Unordered sequence of data
(until Python 3.6),

• Index = user-defined key

• Unique key

Lists Dictionaries

keys values

index

values

0

1

2

CS1111 – University of Virginia 8© Praphamontripong

Dictionaries

phonebook = {‘friend1’: ‘111-1111’, ‘friend2’:‘222-2222’}
key value

Create a dictionary

phonebook2 = { }

Empty dictionary

keys values

‘friend1’ ‘111-1111’

‘friend2’ ‘222-2222’

CS1111 – University of Virginia 9© Praphamontripong

• Create a dictionary of a “friend” object.

• You will start by getting inputs from 5 friends (neighbors).
Inputs contain

• Name
• Email address

• Use { } to create a “friends” dictionary with the
information you gathered

• Print the dictionary content using
print(your-dictionary-name)

Reminder: Dictionary does not allowed duplicate key

Exercise: Create Dictionary with { }

CS1111 – University of Virginia 10© Praphamontripong

Access items from a Dictionary

phonebook[‘friend1’]

Retrieve a value from a dictionary

Include quotations for string keys

What would happen if we try to access a key that does
not exist?

Dictionary_name[key]

CS1111 – University of Virginia 11© Praphamontripong

Exercise: Access Items with [key]

• Revisit your “friends” dictionary

• Access 2 friends and print their email addresses

• Try accessing a friend who is not in the dictionary and
observe what happens

• Print the dictionary content using

print(your-dictionary-name)

CS1111 – University of Virginia 12© Praphamontripong

Add Items to a Dictionary
phonebook = {‘friend1’: ‘111-1111’, ‘friend2’:‘222-2222’,

‘friend3’: ‘333-3333’}

phonebook[‘friend4’] = ‘444-4444’

phonebook[‘friend1’] = ‘555-5555’

Dictionary_name[key] = value

• No duplicate keys in a dictionary

• When you assign a value to an existing key, the new
value replaces the existing value

assignmentkey value

keys values

‘friend1’ ‘111-1111’

‘friend2’ ‘222-2222’

‘friend3’ ‘333-3333’

‘friend4’ ‘444-4444’

‘555-5555’

CS1111 – University of Virginia 13© Praphamontripong

Exercise: Add Items with [key]
• Revisit your “friends” dictionary

• Add 2 more friends and their email addresses to the
dictionary

• Try adding one more friend with the key already in the
dictionary and observe what happens (… reassign the
value)

• Print the dictionary content using

print(your-dictionary-name)

CS1111 – University of Virginia 14© Praphamontripong

Delete Items from Dictionaries
del phonebook[‘friend1’]

del deletes an element at a particular position

What would happen if we try to delete an item with an
index that doesn’t exist?

key

pop() gets a value (and use it somewhere else), and
deletes an element (a key/value pair)

phone_number = phonebook.pop(‘friend1’)

key

CS1111 – University of Virginia 15© Praphamontripong

Exercise: Remove Item with
del and pop()

• Revisit your “friends” dictionary

• Remove one friend from the dictionary, using del

• Print the dictionary content using
print(your-dictionary-name)

• Try removing a friend whose name is not in the dictionary,
using del, and observe what happens

• Remove one friend from the dictionary, using pop()

• Print the dictionary content using
print(your-dictionary-name)

• Try removing a friend whose name is not in the dictionary,
using pop(), and observe what happens

CS1111 – University of Virginia 16© Praphamontripong

Length of Dictionaries
phonebook = {‘friend1’: ‘111-1111’,

‘friend2’: ‘222-2222’,
‘friend3’: ‘333-3333’}

num_items = len(phonebook)

len() is a function to return the length of a dictionary
(i.e., the number of items in a dictionary)

CS1111 – University of Virginia 17© Praphamontripong

Exercise: Get Size with len(dict)

• Revisit your “friends” dictionary

• Print the number of items of the dictionary

• Print the dictionary content using

print(your-dictionary-name)

CS1111 – University of Virginia 18© Praphamontripong

Retrieve Values, Keys, or Items
retrieve a value for a particular key
phonebook.get(”friend4”)

access a non-existent key, set return value
phonebook.get(”friend99”, “friend99 does not exist”)

phonebook.items() # retrieve all the keys and values
phonebook.keys() # retrieve all the available keys
phonebook.values() # retrieve all the values

get(key, optional-msg) gets a particular value
based on key

items() gets all the keys and values
keys()gets all the keys
values()gets all the values

CS1111 – University of Virginia 19© Praphamontripong

Exercise: Retrieve Value with get()
• Revisit your “friends” dictionary

• Print the dictionary content using

print(your-dictionary-name)

• Retrieve an email address of one friend, using get(), and
print it

• Try retrieving an email of a friend whose name is not in the
dictionary, using get(), and observe what happens

• Try (again) retrieving an email of a friend whose name is
not in the dictionary, using get(), set return value if the
friend’s name (key) is not found, and observe what happens

CS1111 – University of Virginia 20© Praphamontripong

Exercise: Retrieve
Items, Keys, Values

• Revisit your “friends” dictionary

• Print the dictionary content using

print(your-dictionary-name)

• Retrieve all items from the dictionary using items(), and
print them

• Retrieve all keys from the dictionary using keys(), and
print them

• Retrieve all values from the dictionary using values(), and
print them

CS1111 – University of Virginia 21© Praphamontripong

Mix Data Types in Dictionaries
test_scores = {‘friend1’ : [88, 92, 100],

‘friend2’ : [95, 88, 81],
‘friend3’ : [70, 75, 78]}

print(test_scores)

print(‘friend2\’s scores: ’ + str(test_scores[‘friend2’]))
why do we need str()?

friend3_scores = test_scores[’friend3’]
print(‘friend3\’s scores: ’ + str(friend3_scores))

Keys must be unique and immutable (primitive data type)
Values can be of any data types

CS1111 – University of Virginia 22© Praphamontripong

Exercise: List in Dictionary
• You will now work with a dictionary that has mixed types of

content.

• Gather some more information from friends. You will create a list
of the information. Such as

• List of email addresses, or
• List of phone numbers, or
• List of favorite cartoons (or movies), or
• List of courses currently taken, or
• List of anything you are interested to know about your friends

• Create a “favoritefriends” dictionary, using the friend’s name as
key and a list of the information you gather as value for that
friend

• Print the dictionary

• Access 2 friends in the “favoritefriends” dictionary and print the
corresponding values

CS1111 – University of Virginia 23© Praphamontripong

in
phonebook = {‘friend1’: ‘111-1111’,

‘friend2’: ‘222-2222’,
‘friend3’: ‘333-3333’}

phonebook[‘upsorn’] = ‘444-4444’

print(‘upsorn’ in phonebook)
print(‘upsorn’ not in phonebook)
print(‘upsorn’ in phonebook.keys())
print(‘444-4444’ in phonebook.values())

in is a keyword and can be used to check if a particular
item/key/value is in the dictionary/keys/values

CS1111 – University of Virginia 24© Praphamontripong

Empty the Dictionaries

phonebook.clear()

clear() empties the dictionary

CS1111 – University of Virginia 25© Praphamontripong

Tracing through Code with
Dictionaries

numAnimals = {}
numAnimals[‘cat’] = 3
numAnimals[‘fish’] = 22
numAnimals[‘dog’] = 5

Variables Heap

A100numAnimals A100

Suppose we are using a dictionary to keep track of the number of
animals in a small pet store

5

22

3

‘dog’

‘fish’

‘cat’

keys values

CS1111 – University of Virginia 26© Praphamontripong

numAnimals = {}
numAnimals[‘cat’] = 3
numAnimals[‘fish’] = 22
numAnimals[‘dog’] = 5

print(numAnimals[‘dog’])

print(numAnimals[2])

print(numAnimals.keys())

print(numAnimals.values())

Variables Heap

A100
numAnimals A100

5

22

3

‘dog’

‘fish’

‘cat’

A100 of ‘dog’
5

A100 of 2

keys values

[‘cat’, ‘fish’, ‘dog’]

[3, 22, 5]

Tracing through Code with
Dictionaries

Suppose we are using a dictionary to keep track of the number of
animals in a small pet store

error

CS1111 – University of Virginia 27© Praphamontripong

numAnimals = {}
numAnimals[‘cat’] = 3
numAnimals[‘fish’] = 22
numAnimals[‘dog’] = 5

print(numAnimals[‘dog’])

print(numAnimals.keys())
print(numAnimals.values())

numAnimals[‘bird’] = 4
numAnimals[‘cat’] = 2

Variables Heap

A100
numAnimals A100

5

22

3

‘dog’

‘fish’

‘cat’

keys values

4‘bird’

A100 of ‘cat’

2

Tracing through Code with
Dictionaries

Suppose we are using a dictionary to keep track of the number of
animals in a small pet store

CS1111 – University of Virginia 28© Praphamontripong

Dictionaries (wrap up)
• declare a dictionary with curly

braces

• add to a dict by specifying a key
and assigning it a value

• a key must be immutable (no
lists)

• the .keys() method returns all
the keys (but we can’t rely on
an order)

• the .values() method returns
all the values (but we can’t
rely on an order)

• assigning to a key that
already has that value
overwrites the old value

dict = {}
dict[1] = ‘cat’
dict[‘dog’] = -8
dict[False] = ‘squirrel’
print(dict.keys())
print(dict.values())
print(dict)

if ‘dog’ in dict.keys():
print(‘dog has a mapping!’)

if ‘cat’ in dict.keys():
print(‘cat has a mapping!’)

dict[‘dog’] = 5
print(dict)

CS1111 – University of Virginia 29© Praphamontripong

Exercise
• Create a dictionary of an “experience” object.

• You will start by getting inputs from users. Inputs contain
• The name of the experience (e.g., "software engineer”)
• The company of the experience (e.g., “IBM”)
• The year of the experience (e.g., “1996”)

• Add the users’ inputs to an “experience” dictionary
• The keys in the dictionary will be the year of the experience, while the values

will be the name of the experience and the companies, stored as a list.
• E.g., { ‘1996’ : [‘software engineer’, ‘IBM], ‘1993’ : [‘sale’, ‘Target’] }

• You should get at least 2 experience inputs from the users.

• Print each experience in a separate line

• You may assume that all experiences passed in as arguments never have
two experiences with the same company and year.

• Try to add more actions: retrieve items, delete items, update items, …

CS1111 – University of Virginia 30© Praphamontripong

Summary
• Must know (based on exam2 topic list, as of 03/17/2019)

• mapping.keys()
• mapping.values()
• mapping.items()
• mapping.pop(key)

(mapping refer to a variable of dict type)

