
CS1111 – University of Virginia 1© Praphamontripong

Regular Expressions
CS 1111

Introduction to Programming

Spring 2019

[Ref: https://docs.python.org/3/library/re.html]

CS1111 – University of Virginia 2© Praphamontripong

Overview
• What are regular expressions?

• Why and when do we use regular expressions?

• How do we define regular expressions?

• How are regular expressions used in Python?

CS1111 – University of Virginia 3© Praphamontripong

What is Regular Expression?
• Special string for describing a pattern of characters
• May be viewed as a form of pattern matching
• Examples (we’ll discuss in details -- ”how to define”)

Regular expression Description

[abc] One of those three characters

[a-z] A lowercase

[a-z0-9] A lowercase or a number

. Any one character

\. An actual period

* 0 to many

? 0 or 1

+ 1 to many

CS1111 – University of Virginia 4© Praphamontripong

Why and When ?
Why ?

• To find all of one particular kind of data
• To verify that some piece of text follows a very

particular format

When ?
• Used when data are unstructured or string

operations are inadequate to process the data

Example unstructured data: 2012debate.txt

Example structured data: fake-111x-officehour-queue

CS1111 – University of Virginia 5© Praphamontripong

How to Define Regular Expressions
• Mark regular expressions as raw strings r"

• Use square brackets "[" and "]" for “any character”
r"[bce]" matches either “b”, “c”, or “e”

• Use ranges or classes of characters
r"[A-Z]" matches any uppercase letter

r"[a-z]" matches any lowercase letter

r"[0-9]" matches any number

Note: use "-" right after [or before] for an actual "-"

r"[-a-z]" matches "-" followed by any lowercase letter

CS1111 – University of Virginia 6© Praphamontripong

How to Define Regular Expressions(2)
• Combine sets of characters

r"[bce]at" starts with either “b”, “c”, or “e”,
followed by “at”

This regex matches text with “bat”, “cat”, and “eat”.
How about “concatenation”?

• Use "." for “any character”
r".at" matches three letter words, ending in “at”

• Use "\." for an actual period
r"at\." matches “at.”

CS1111 – University of Virginia 7© Praphamontripong

• Use "*" for 0 to many
r"[a-z]*" matches text with any number of lowercase

letter

• Use "?" for 0 or 1
r"[a-z]?" matches text with 0 or 1 lowercase letter

• Use "+" for 1 to many
r"[a-z]+" matches text with at least 1 lowercase

letter

• Use "|" for option
r"[ab|12]" matches either ab or 12

How to Define Regular Expressions(3)

CS1111 – University of Virginia 8© Praphamontripong

• Use "^" for negate
r"[^a-z]" matches anything except lowercase letters
r"[^0-9]" matches anything except decimal digits

• Use "^" for “start” of string
r"^[a-zA-Z]" must start with a letter

• Use "$" for “end” of string
r".*[a-zA-Z]$" must end with a letter

• Use "{" and "}" to specify the number of characters
r"[a-zA-Z]{2,3}" must contain 2-3 letters
r"[a-zA-Z]{3}" must contain 3 letters

How to Define Regular Expressions(4)

CS1111 – University of Virginia 9© Praphamontripong

Predefined Character Classes
\d matches any decimal digit – [0-9]

\D matches any non-digit character – [^0-9]

\s matches any whitespace character – [\t\n]

\S matches any non-whitespace – [^\t\n]

\\ matches a literal backslash

\w matches any alphanumeric character – [a-zA-Z0-9_]

\W matches any non-alphanumeric character – [^a-zA-Z0-9_]

CS1111 – University of Virginia 10© Praphamontripong

Exercise
Defining regular expressions describing the following
information / pattern

• Names

• Phone numbers

• UVA Computing ID

• Different patterns?

r"[A-Z][a-z]+"

r"[0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]"

r"[a-z][a-z][a-z]?[0-9][a-z][a-z][a-z]?"

CS1111 – University of Virginia 11© Praphamontripong

Use Regular Expressions in Python
• Import re module

• Define a regular expression (manual or use a tool
http://regexr.com/ , https://regex101.com/)

• Create a regular expression object that matches the
pattern

• Search / find the pattern in a given text

or

or

import re

regex = re.compile(r"[A-Z][a-z]*")

results = regex.search(text)

results = regex.findall(text)

results = regex.finditer(text)

CS1111 – University of Virginia 12© Praphamontripong

re.compile(pattern)
• Compile a regular expression pattern into a regular
expression object

regex = re.compile(r"[A-Z][a-z]*")

CS1111 – University of Virginia 13© Praphamontripong

re.search(pattern, string)
• Scan through string looking for the first location where
the pattern matches and return a match object

• Otherwise, return None if a match is not found

• A match object contains group()-return the match
object, start()-return first index of the match, and
end()-return last index of the match

regex = re.compile(r"[A-Z][a-z]*")
results = regex.search(text)

results = re.search(r"[A-Z][a-z]*"), text)

=

CS1111 – University of Virginia 14© Praphamontripong

re.findall(pattern, string)
• Return a list of strings of all non-overlapping matches
of pattern in string

• Otherwise, return an empty list if a match is not found

• The string is scanned left-to-right

• The matches are returned in the order found

• Note: a list does not support group()

regex = re.compile(r"[A-Z][a-z]*")
results = regex.findall(text)

CS1111 – University of Virginia 15© Praphamontripong

re.finditer(pattern, string)
• Return a collection of match objects in string

• Otherwise, return an empty collection if a match is not
found

• The string is scanned left-to-right

• The matches are returned in the order found

• Note: a match object supports group()

regex = re.compile(r"[A-Z][a-z]*")
results = regex.finditer(text)

CS1111 – University of Virginia 16© Praphamontripong

match.group(), match.group(n),
match.groups()

group()
• Return the matched object ≈ group(0)

group(n)
• Return the nth subgroup (n=1,2,…, number of subgroups)

groups()
• Return all matching subgroups in a tuple

regex = re.compile(r"([A-Z])([a-z]*)")
results = regex.finditer(text)
for m in results:

print(m.group(), m.group(0), m.group(1), m.group(2))
print(m.groups())

CS1111 – University of Virginia 17© Praphamontripong

Summary
• Must know (based on exam3 topic list, as of 04/10/2019)

• import re

• re.compile(r'...'),
• including the use of ., [], (), +, *, and ?

• compiled_re.search(text)

• compiled_re.finditer(text)

• match.group()

• match.group(n)

• match.groups()

