Regular Expressions

CS 1111
Introduction to Programming

Spring 2019

[Ref: hitps://docs.python.org/3/library/re.html]

CS1111 — University of Virginia

Overview

What are regular expressions?

Why and when do we use regular expressions?
How do we define regular expressions?
How are regular expressions used in Python?

CS1111 — University of Virginia © Praphamontripong

What is Regular Expression?

Special string for describing a pattern of characters
May be viewed as a form of pattern matching
Examples (we’ll discuss in details -- "how to define”)

Regular expression Description
[abc] One of those three characters
[a-Z] A lowercase
[@-z0-9] A lowercase or a number

Any one character

\. An actual period
x 0 to many
? Oorl

+ 1 to many

CS1111 — University of Virginia © Praphamontripong

Why and When ?

Why ?
To find all of one particular kind of data

To verify that some piece of text follows a very
particular format

When ?

Used when data are unstructured or string
operations are inadequate to process the data

Example unstructured data: 2012debate.txt

Example structured data: fake-111x-officehour-queue

CS1111 — University of Virginia © Praphamontripong

How to Define Regular Expressions

Mark regular expressions as raw strings r

Use square brackets "[" and "]" for “any character”

(4 \ {4

r"[bce]" matches either "b”, “c”, or “e

Use ranges or classes of characters

r"[A-Z]" matches any uppercase letter
r"[a-z]" matches any lowercase letter
r"[0-9]" matches any number

Note: use "-" right after [or before] for an actual "-"

r'[-a-z]" matches "-" followed by any lowercase letter

CS1111 — University of Virginia © Praphamontripong

How to Define Regular Expressions(2)

Combine sets of characters

A\ 144

r"[bce]at" starts with either “b”, “c”, or “e”,
followed by “at”

This regex matches text with “bat”, “cat”, and “eat”.
How about “concatenation”?

Use for “any character”

r.at

matches three letter words, ending in “at”

Use "\." for an actual period
r'at\."” matches “at.”

CS1111 — University of Virginia © Praphamontripong

How to Define Regular Expressions(3)

Use "*" for 0 to many

r'[a-z]*" matches text with any number of lowercase
letter

Use "?" for O or 1
r"[a-z]?" matches text with O or 1 lowercase letter

Use "+" for 1 to many

r'[a-z]+" matches text with at least 1 lowercase
letter

Use "|" for option
r"[abl12]" matches either ab or 12

CS1111 — University of Virginia © Praphamontripong

How to Define Regular Expressions(4)

Use "M" for negate
r'[~a-z]" matches anything except lowercase letters
r'[~0-9]" matches anything except decimal digits

Use "~" for “start” of string
r"Na-zA-Z]" must start with a letter

Use "$" for “end” of string
. *[a-zA-Z]$" must end with a letter

Use "{" and "}" to specify the number of characters
r"[a-zA-Z]{2,3}" must contain 2-3 letters
r"[a-zA-Z]{3}" must contain 3 letters

CS1111 — University of Virginia © Praphamontripong

Predefined Character Classes

\d matches any decimal digit — [0-9]

\D matches any non-digit character — [*0-9]

\s matches any whitespace character — [\t\n]

\S matches any non-whitespace - [\t\n]

\\ matches a literal backslash

\w matches any alphanumeric character - [a-zA-Z0-9_]

\W matches any non-alphanumeric character - [*a-zA-Z0-9_]

CS1111 — University of Virginia © Praphamontripong

Exercise

Defining regular expressions describing the following
information / pattern

Names

r"[A-Z][a-z]+"

Phone numbers
r"[0-9]110-9]1[0-9]1-710-9]1[0-91[0-97-[0-91[0-9]71[0-91[0-91"

UVA Computing ID

r'"[a-z][a-2z][a-2]?2[0-9][a-z][a-z][a-2]?"

Different patterns?

CS1111 — University of Virginia © Praphamontripong

Use Reqgular Expressions in Python

Import re module

import re

Define a regular expression (manual or use a tool
http://regexr.com/ , https://regex101.com/)

Create a regular expression object that matches the

pattern
regex = re.compile(r"[A-Z][a-2]*")

Search / find the pattern in a given text
results = regex.search(text)

results = regex.findall (text)

results = regex.finditer (text)

CS1111 — University of Virginia © Praphamontripong

re.compile(pattern)

Compile a regular expression pattern into a regular
expression object

regex = re.compile(r"[A-Z][a-2]*")

CS1111 — University of Virginia © Praphamontripong

re.search(pattern, string)

Scan through string looking for the first location where
the pattern matches and return a match object

Otherwise, return None if a match is not found

A match object contains group () -return the match
object, start ()-return first index of the match, and
end () -return last index of the match

regex = re.compile(r"[A-Z][a-2]*")
results = regex.search(text)

| =

results = re.search(r"[A-Z][a-2]*"), text)

CS1111 — University of Virginia © Praphamontripong

re.findall (pattern, string)

Return a list of strings of all non-overlapping matches
of patternin string

Otherwise, return an empty list if a match is not found
The stringis scanned left-to-right

The matches are returned in the order found

regex = re.compile(r"[A-Z][a-2]*")
results = regex.findall (text)

Note: a list does not support group ()

CS1111 — University of Virginia © Praphamontripong

re.finditer (pattern, string)

Return a collection of match objects in string

Otherwise, return an empty collection if a match is not
found

The string is scanned left-to-right

The matches are returned in the order found

regex = re.compile(r"[A-Z][a-2]*")
results = regex.finditer (text)

Note: a match object supports group()

CS1111 — University of Virginia © Praphamontripong

match.group(), match.group(n),
match.groups ()

group ()
Return the matched object = group (0)

group(n)
Return the nt" subgroup (n=1,2,..., number of subgroups)

groups ()
Return all matching subgroups in a tuple

regex = re.compile(r" ([A-Z])([a-2z]*)")

results = regex.finditer (text)

for m in results:
print (m.group(), m.group(0), m.group(l), m.group(2))
print (m.groups())

CS1111 — University of Virginia © Praphamontripong

Summary

Must know (based on exam3 topic list, as of 04/10/2019)

import re

re.compile(r'..."),
including the useof ., [1, (), +, *, and ?

compiled re.search(text)
compiled re.finditer(text)
match.group()
match.group(n)

match.groups()

CS1111 — University of Virginia © Praphamontripong

