
Spring 2024 – University of Virginia 1© Praphamontripong

Introduction to
Software Testing

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 1, Ch. 2.1]

Spring 2024 – University of Virginia 2© Praphamontripong

What is Software Testing?
• Testing = process of finding input values to check against
a software (focus of this course)

Test case consists of test values and expected results

Test values
(inputs)

Actual
results

Program Expected
results

vs

1. Testing is fundamentally about choosing finite sets of values from
the input domain of the software being tested

2. Given the test inputs, compare the actual results with the expected
results

Goal – reveal faults

• Debugging = process of finding a fault given a failure

Spring 2024 – University of Virginia 3© Praphamontripong

Testing Categories
Static testing

• Testing without executing the
program

� Software inspection and
some forms of analysis

� Effective at finding certain
kinds of problems such as
problems that can lead to
faults when the program is
modified

• Inspection, walkthrough,
code review, informal review,
…

Dynamic testing

• Testing by executing the
program with real inputs

• Unit testing, integration
testing, system testing,
acceptance testing, …

Spring 2024 – University of Virginia 4© Praphamontripong

Testing Categories (2)

Test with
complete information

of the software
(architecture, how

components interact,
functions and

operations, code,
rationale, …)

White-box
testing

Test with
incomplete information

of the software or
limited knowledge of

internal details
(may know how

components interact
but not have detailed

knowledge about
internal program

functions, source code,
rationale, …)

Gray-box
testing

Test from the outside
(functionality and

behavior).
Not require

source code,
architecture, detailed

knowledge about
internal program

functions,
rationale, …)

Black-box
testing

Spring 2024 – University of Virginia 5© Praphamontripong

Testing Categories (3)
Functional testing

• Unit testing
• Integration testing
• System testing
• Smoke testing
• Acceptance testing (Alpha /

Beta
• Agile testing
• Regression testing
• Continuous integration

testing

… and many more …

Non-functional testing

• Performance testing
• Load testing
• Stress testing
• Security testing
• Compatibility testing
• Reliability testing
• Usability testing
• Compliance testing
• Conformance testing

… and many more …

Spring 2024 – University of Virginia 6© Praphamontripong

Validation and Verification (IEEE)
Validation

• Evaluate software at the end
of software development

• Ensure compliance with the
intended usage

• Done by experts in the
intended usage of the
software, not developers

Verification

• Evaluate software at a given
phase of the development
process

• Fulfill the requirements
established during the
previous phase

• Requires technical background
on the software

• Done by developers at the
various stages of development

IV&V stands for “independent verification and validation”

Spring 2024 – University of Virginia 7© Praphamontripong

Check if software
does what the user
needs

Check overall
behavior w.r.t.
specs

Check interface
between modules
in the same
subsystem

Check interactions
of units and
associated data
structures

Check each unit
(method)
individually

Testing and
SW Development Lifecycle

Requirements
Analysis

Architectural
Design

Subsystem
Design

Detailed
Design

Implementation

Acceptance
Test

System
Test

Integration
Test

Module
Test

Unit
Test

[based in part on AO, p.23]

Test
Design

Information

Spring 2024 – University of Virginia 8© Praphamontripong

Verification

Validation

Testing and
SW Development Lifecycle

Requirements
Analysis

Architectural
Design

Subsystem
Design

Detailed
Design

Implementation

Acceptance
Test

System
Test

Integration
Test

Module
Test

Unit
Test

[based in part on AO, p.23]

Test
Design

Information

Spring 2024 – University of Virginia 9© Praphamontripong

Goals based on
Test Process Maturity

Beizer’s scale for test process maturity

§ Level 0: There is no difference between testing and debugging

§ Level 1: The purpose of testing is to show correctness

§ Level 2: The purpose of testing is to show that the software
does not work

§ Level 3: The purpose of testing is not to prove anything
specific, but to reduce the risk of using the software

§ Level 4: Testing is a mental discipline that helps all IT
professionals develop higher quality software

[AO, p.9]

Spring 2024 – University of Virginia 10© Praphamontripong

Level 0 – Testing is Debugging
§ Level 0: Testing is the same as debugging

[image: http://softwaretestingandqa.blogspot.com/2007/12/software-bug.html]

§ Not distinguish between
incorrect behavior and mistakes
in the program

§ Not help develop software that
is reliable

§ Adopted by most CS students L
§ Get programs to compile
§ Debug with few arbitrarily

chosen inputs or those provided
by instructors

Spring 2024 – University of Virginia 11© Praphamontripong

Levels 1 – Software Works
§ Level 1: To show correctness (developer-biased view)

[image: http://simply-the-test.blogspot.com/2010/]

§ Correctness is impossible to
establish or demonstrate

§ What do we know if “no failures”?
§ Good software?
§ Bad tests?

§ No strict goal, no stopping rule or
formal test technique

§ No quantitatively way to
evaluate; test managers are
powerless

Spring 2024 – University of Virginia 12© Praphamontripong

Levels 2 – Software Doesn’t Work
§ Level 2: To show failure (tester-biased view)

§ A negative view puts testers and developers into an adversarial
relationship – bad team morale

§ What do we know if “no failures”?

[image: http://simply-the-test.blogspot.com/2010/]

Spring 2024 – University of Virginia 13© Praphamontripong

“Mature” Testing

Correctness cannot generally be achieved or
demonstrated through testing.

Testing can only show the presence of failure,
not the absence.

Developers and testers should be on the same boat.

How can we move to a team approach?

Spring 2024 – University of Virginia 14© Praphamontripong

Levels 3 – Risk Reduction
§ Level 3: To reduce the risk of using the software

§ There are risks when using software

§ Some may be small with unimportant consequences

§ Some may be big with important consequences, or even
catastrophic

§ Testers and developers cooperate to reduce risk

Spring 2024 – University of Virginia 15© Praphamontripong

Levels 4 – Quality Improvement
§ Level 4: To increase quality of the software

§ Testing should be an integral part of the development process

§ Testers become technical leaders à measuring and improving
software quality

§ Help developers improve the ability to produce quality software
§ Train developers

§ Testers and developers cooperate to improve the quality

§ Example: Spell checker
§ Purpose: to improve our ability to spell

§ Change of mindset:
“find misspelled words” à “improve ability to spell”

Spring 2024 – University of Virginia 16© Praphamontripong

How “Mature” is Your Testing?

Are you at level 0, 1, 2, 3, or 4?

We hope to train you to become “change agents” (level 4)

Spring 2024 – University of Virginia 17© Praphamontripong

Principles of Software Testing

1. Exhaustive testing is impossible

2. We need to know when to stop testing

3. There is no silver bullet in software testing

4. Faults happen in some places more than others

5. Bug-free software does not exist

6. Testing is context-dependent

7. Verification is not validation

Why testing is so hard

Spring 2024 – University of Virginia 18© Praphamontripong

Tactical Goals: Each Test

§ What is objective and requirement of each test?

§ What fact does each test try to verify?

§ What are the threshold reliability requirements?

§ What are the planned coverage levels?

§ How many tests are needed?

”If you don’t know why you’re conducting each test,
it won’t be very helpful” – Jeff Offutt

Spring 2024 – University of Virginia 19© Praphamontripong

Wrap-up
• A tester’s goal is to eliminate faults as early as possible

• Testing
� Improves software quality

� Reduce cost

� Preserve customer satisfaction

• What’s next?
• Fault, error, failure

• Reachability, Infection, Propagation, and Revealability
(RIPR) model

