
Spring 2024 – University of Virginia 1© Praphamontripong

Faults, Errors, Failures
RIPR Model

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch.1, Ch. 2.1]

Spring 2024 – University of Virginia 2© Praphamontripong

Software Testing

Test case consists of
• test input value(s)
• expected result(s)

Test values
(inputs)

Actual
results

Program Expected
results

vs

Testing can only reveal the presence of faults;
Not showing the absence of faults

Will all inputs trigger
a problem in

software into a
failure?

[Ref: emoji by Ekarin Apirakthanakorn]

Spring 2024 – University of Virginia 3© Praphamontripong

Today’s Objectives
• Understand the differences between faults, errors, and failures

• Understand how faults, errors, and failures affect the program

• Understand the four conditions that must be satisfied when
designing tests

� Reachability
� Infection
� Propagation
� Revealability

“RIPR model”

Spring 2024 – University of Virginia 4© Praphamontripong

Bug?

• “Bug” is used informally.

• Fault? Error? Or failure?

• This course will try to use words that have precise, defined,
and unambiguous meaning – and avoid using the term “bug”

“ ‘Bug’ – as such little faults and difficulties are
called – show themselves, and months of
anxious watching, study, and labor are requisite
before commercial success – or failure – is
certainly reached.” [Thomas Edison, 1878]
[Ref: Did You Know? Edison Coined the Term “Bug”,
http://theinstitute.ieee.org/tech-history/technology-history/did-
you-know-edison-coined-the-term-bug, IEEE 2013]

BUG

[Ref: https://en.wikipedia.org/wiki/Software_bug]

“A software bug is an error, flaw, failure or fault in a computer program or
system that causes it to produce an incorrect or unexpected result, or to
behave in unintended ways.”

Spring 2024 – University of Virginia 5© Praphamontripong

Fault, Error, and Failure
• Fault: a static defect in the software’s source code

� Cause of a problem – “fault location”

• Error: An incorrect internal state that is the
manifestation of some fault

� Erroneous/infected program state caused by execution
of the defect

• Failure: External, incorrect behavior with respect to
the requirements or other descriptions of the
expected behavior

� Propagation of erroneous state to the program outputs

Spring 2024 – University of Virginia 6© Praphamontripong

Example
public static int numZero (int[] arr)
{ // If arr is null throw NullPointerException

// else return the number of occurrences of 0 in arr
int count = 0;
for (int i = 1; i < arr.length; i++)

if (arr[i] == 0)
count++;

return count;
}

• There is a simple fault in numZero

• Where is the fault location in the source code?

• How would you fix it?

• Can the fault location be reached? How does it corrupt
program state? Does it always corrupt the program state?

• If the program state is corrupted, does numZero fail? How?

Spring 2024 – University of Virginia 7© Praphamontripong

Example – Let’s Analyze
public static int numZero (int[] arr)
{ // If arr is null throw NullPointerException

// else return the number of occurrences of 0 in arr
int count = 0;
for (int i = 1; i < arr.length; i++)

if (arr[i] == 0)
count++;

return count;
}

• Fault: a defect in source code

• Error: erroneous program state caused by execution of the defect

• Failure: propagation of erroneous state to the program outputs

i = 1 [should start searching at 0, not 1]

i becomes 1 [array entry 0 is not ever read]

Happens as long as arr.length > 0 and arr[0] = 0

Spring 2024 – University of Virginia 8© Praphamontripong

Example – Test Cases
public static int numZero (int[] arr)
{ // If arr is null throw NullPointerException

// else return the number of occurrences of 0 in arr
int count = 0;
for (int i = 1; i < arr.length; i++)

if (arr[i] == 0)
count++;

return count;
}

• Test 1: [4, 6, 0], expected 1

• Test 2: [0, 4, 6], expected 1

Error: i is 1, not 0, on the first iteration
Failure: none

Error: i is 1, not 0, error propagates to the variable count
Failure: count is 0 at the return statement

Fault: i = 1 [should start
searching at 0, not 1]

Spring 2024 – University of Virginia 9© Praphamontripong

Example – State Representation

• Assume that we want to represent program states using the
notation <var1 = v1, …, varn = vn, PC = program counter>

• Sequence of states in the execution of numZero({0, 4, 6})
1: < arr={0, 4, 6}, PC=[int count=0 (L1)] >
2: < arr={0, 4, 6}, count=0, PC=[i=1 (L2)] >
3: < arr={0, 4, 6}, count=0, i=1, PC=[i<arr.length (L2)] >
…

< arr={0, 4, 6}, count=0, i=3, PC=[return count (L5)] >

public static int numZero (int[] arr)
{ // If arr is null throw NullPointerException

// else return the number of occurrences of 0 in arr
int count = 0;
for (int i = 1; i < arr.length; i++)

if (arr[i] == 0)
count++;

return count;
}

L1
L2
L3
L4
L5

Spring 2024 – University of Virginia 10© Praphamontripong

Example – Error State
• Error state

� The first different state in execution in comparison to an execution
to the state sequence of what would be the correct program

• If the code had i=0 (correct program), the execution of
numZero({0, 4, 6}) would be

1: < arr={0, 4, 6}, PC=[int count=0 (L1)] >
2: < arr={0, 4, 6}, count=0, PC=[i=0 (L2)] >
3: < arr={0, 4, 6}, count=0, i=0, PC=[i<arr.length (L2)] >
…

• Instead, we have
1: < arr={0, 4, 6}, PC=[int count=0 (L1)] >
2: < arr={0, 4, 6}, count=0, PC=[i=1 (L2)] >
3: < arr={0, 4, 6}, count=0, i=1, PC=[i<arr.length (L2)] >
…

The first error state
is immediately after
executing i=1
(line L2)

Spring 2024 – University of Virginia 11© Praphamontripong

RIPR Model
Four conditions necessary for a failure to be observed

• Reachability
� The fault is reached

• Infection
� Execution of the fault leads to an incorrect program state (error)

• Propagation
� The infected state must cause the program output or final state to

be incorrect (failure)

• Revealability
� The tester must observe part of the incorrect portion of the

program state

Spring 2024 – University of Virginia 12© Praphamontripong

RIPR Model

[AO, p.21]

Test

Fault
location

Incorrect
program
states

Incorrect
portion of the

final state

Observed
portion of

the program
state

Final program state
and outputs

Reaches

Infects

Propagates

Reveals

Observed
portion of

the program
state

Observes
Observes

Spring 2024 – University of Virginia 13© Praphamontripong

Example – Applying RIPR

Revisit the example, what characteristics (or constraints) the
inputs should have (or satisfy)?

• Reach a fault (i.e., execute the fault)

• Cause the program state to be incorrect (i.e., error)

• Cause the infected state to be propagated (i.e., failure)

public static int numZero (int[] arr)
{ // If arr is null throw NullPointerException

// else return the number of occurrences of 0 in arr
int count = 0;
for (int i = 1; i < arr.length; i++)

if (arr[i] == 0)
count++;

return count;
}

L1
L2
L3
L4
L5

Did you consider “happy paths” or “non happy paths” ?

Spring 2024 – University of Virginia 14© Praphamontripong

Example – RIPR (Error, No Failure)

Revisit the example, apply RIPR to design tests that

• Reach a fault (i.e., execute the fault)

• Cause the program state to be incorrect (i.e., error)

• Does not propagate (i.e., no failure)
� One possible test is [4, 6, 0] – now, design some more

• How does RIPR model help designing tests?

public static int numZero (int[] arr)
{ // If arr is null throw NullPointerException

// else return the number of occurrences of 0 in arr
int count = 0;
for (int i = 1; i < arr.length; i++)

if (arr[i] == 0)
count++;

return count;
}

L1
L2
L3
L4
L5

Spring 2024 – University of Virginia 15© Praphamontripong

Example – RIPR (Error, Failure)

Revisit the example, apply RIPR to design tests that

• Reach a fault (i.e., execute the fault)

• Cause the program state to be incorrect (i.e., error)

• Propagate (i.e., failure)
� One possible test is [0, 4, 6] – now, design some more

• How does RIPR model help designing tests?

public static int numZero (int[] arr)
{ // If arr is null throw NullPointerException

// else return the number of occurrences of 0 in arr
int count = 0;
for (int i = 1; i < arr.length; i++)

if (arr[i] == 0)
count++;

return count;
}

L1
L2
L3
L4
L5

Spring 2024 – University of Virginia 16© Praphamontripong

Wrap-up
• Faults, errors, failures

• Fault location

• Infected state

• RIPR model

• Observability and revealibility

What’s Next?

• Model-Driven Test Design (MDTD)

