Graph: Structural Coverage Criteria
(Intro, NC, EC, EPC)

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 7]
Structures for Criteria-Based Testing

Four structures for modeling software

Input space

- Graph
 - Source
 - Design
 - Specs
 - Use cases
 - Applied to: R--R

Logic

- Source
- Specs
- FSMs
- DNF
- Applied to: RI-R

Syntax

- Source
- Models
- Integration
- Inputs
- Applied to: RIPR
Today’s Objectives

- Investigate some of the most widely known test coverage criteria
- Understand basic theory of graph
 - Generic view of graph without regard to the graph’s source
- Understand how to use graph to define criteria and design tests
 - Node coverage (NC)
 - Edge coverage (EC)
 - Edge-pair coverage (EPC)
- Graph derived from various software artifacts (coming soon)
Overview

- Graphs are the most commonly used structure for testing
- Graphs can come from many sources
 - Control flow graphs from source
 - Design structures
 - Finite state machine (FSM)
 - Statecharts
 - Use cases
- The graph is not the same as the artifact under test, and usually omits certain details
- Tests must **cover** the graph in some way
 - Usually traversing specific portions of the graph
Graph: Nodes and Edges

• **Node** represents
 • Statement
 • State
 • Method
 • Basic block

• **Edge** represents
 • Branch
 • Transition
 • Method call
Basic Notion of a Graph

• Nodes:
 • \(N \) = a set of nodes, \(N \) must not be empty

• Initial nodes
 • \(N_0 \) = a set of initial nodes, must not be empty
 • Single entry vs. multiple entry

• Final nodes
 • \(N_f \) = a set of final nodes, must not be empty
 • Single exit vs. multiple exit

• Edges:
 • \(E \) = a set of edges, each edge from one node to another
 • An edge is written as \((n_i, n_j)\)
 • \(n_i \) is predecessor, \(n_j \) is successor

Every test must **start** in some initial node, and **end** in some final node
Note on Graphs

- The concept of a final node depends on the kind of software artifact the graph represents.
- Some test criteria require tests to end in a particular final node.
- Some test criteria are satisfied with any node for a final node (i.e., the set $N_f = \text{the set } N$).
Example Graph

- **Node**
 \[N = \{1, 2, 3, 4\} \]
 \[N_0 = \{1\} \]
 \[N_f = \{4\} \]

- **Edge**
 \[E = \{(1,2), (1,3), (2,4), (3,4)\} \]

Is this a graph?

Single-Entry, Single-Exit (SESE)

\[N = \{1\} \]
\[N_0 = \{1\} \]
\[N_f = \{1\} \]
\[E = \{\} \]
Example Graph

- **Node**
 \[N = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \]
 \[N_0 = \{1, 2, 3\} \]
 \[N_f = \{8, 9, 10\} \]

- **Edge**
 \[E = \{(1,4), (1,5), (2,5), (6,2), (3,6), (3,7), (4,8), (5,8), (5,9), (6,10), (7,10), (9,6)\} \]
Example Graph

- **Node**

 \[N = \{1, 2, 3, 4\}\]

 \[N_0 = \{\}\]

 \[N_f = \{4\}\]

- **Edge**

 \[E = \{(1,2), (1,3), (2,4), (3,4)\}\]

Not valid graph – no initial nodes
Not useful for generating test cases
Paths in Graphs

- **Path p**
 - A sequence of nodes, $[n_1, n_2, ..., n_M]$
 - Each pair of adjacent nodes, (n_i, n_{i+1}), is an edge

- **Length**
 - The number of edges
 - A single node is a path of length 0

- **Subpath**
 - A subsequence of nodes in p (possibly p itself)
Example Paths

- **Paths**
 - \([1, 4, 8]\)
 - \([2, 5, 8]\)
 - \([2, 5, 9]\)
 - \([2, 5, 9, 6, 10]\)
 - \([3, 6, 10]\)
 - \([3, 7, 10]\)
 - \([3, 6, 2, 5, 9]\)
 - \([2, 5, 9, 6, 2]\)

- **Cycle** – a path that begins and ends at the same node
Example Paths

- Invalid paths
 - [1, 8]
 - [4, 5]
 - [3, 7, 9]

Invalid path – a path where the two nodes are not connected by an edge.
def template(num1, num2):
 result = ""
 if num1 == 0:
 result = "num1 is 0"
 elif num1 == 1:
 result = "num1 is 1"
 if num2 > 3:
 result = " num2 > 3"
 elif num2 > 4:
 result = "This will never run"
 else:
 result = " num2 <= 3"
 else:
 result = "num1 is not 0 or 1"
 return result
Invalid Paths

- Many test criteria require inputs that start at one node and end at another. – This is only possible if those nodes are connected by a path.

- When applying these criteria on specific graphs, we sometimes find that we have asked for a path that for some reason cannot be executed.

- Example: a path may demand that a loop be executed zero time, where the program always executed the loop at least once.

- This problem is based on the semantics of the software artifact that the graph represents.

- For now, let’s emphasize only the syntax of the graph
Graph and Reachability

• A location in a graph (node or edge) can be reached from another location if there is a sequence of edges from the first location to the second

• Syntactically reachable
 • There exists a subpath from node n_i to n (or to edge e)

• Semantically reachable
 • There exists a test that can execute that subpath
Example: Reachability

- From node 1
 - Possible to reach all nodes except nodes 3 and 7

- From node 5
 - Possible to reach all nodes except nodes 1, 3, 4, and 7

- From edge (7, 10)
 - Possible to reach nodes 7 and 10 and edge (7, 10)

Some graphs (such as finite state machines) have explicit edges from a node to itself, that is \((n_i, n_i)\)
Test Paths

- A path that starts at an initial node and end at a final node

- A test path represents the execution test cases
 - Some test paths can be executed by many test cases
 - Some test paths cannot be executed by any test cases
 - Some test paths cannot be executed because they are infeasible
SESE Graphs

- **SESE** (Single-Entry-Single-Exit) graphs
 - The set N_0 has exactly one node (n_0)
 - The set N_f has exactly one node (n_f), n_f may be the same as n_0
 - n_f must be syntactically reachable from every node in N
 - No node in N (except n_f) be syntactically reachable from n_f
 (unless n_0 and n_f are the same node)

Double-diamonded graph
(two if-then-else statements)

4 test paths
- $[1, 2, 4, 5, 7]$
- $[1, 2, 4, 6, 7]$
- $[1, 3, 4, 5, 7]$
- $[1, 3, 4, 6, 7]$
Visiting

- A test path \(p \) visits node \(n \) if \(n \) is in \(p \)
- A test path \(p \) visits edge \(e \) if \(e \) is in \(p \)

Consider path \([1, 2, 4, 5, 7]\)
Visits node: 1, 2, 5, 4, 7
Visits edge: (1,2), (2,4), (4,5), (5,7)
Touring

- A test path \(p \) tours subpath \(q \) if \(q \) is a subpath of \(p \)

Node \(N = \{1, 2, 3, 4, 5, 6, 7\} \)

Edge \(E = \{(1,2), (1,3), (2,4), (3,4), (4,5), (4,6), (5,7), (6,7)\} \)

(Each edge is technically a subpath)

Consider a test path \([1, 2, 4, 5, 7]\)

Visit notes: \(1, 2, 4, 5, 7\)

Visit edges: \((1,2), (2,4), (4,5), (5,7)\)

Tours subpaths: \([1,2,4,5,7], [1,2,4,5], [2,4,5,7], [1,2,4], [2,4,5], [4,5,7], [1,2], [2,4], [4,5], [5,7]\)

Any given path \(p \) always tours itself
Mapping: Test Cases – Test Paths

- \(\text{path}(t) = \) Test path executed by test case \(t \)
- \(\text{path}(T) = \) Set of test paths executed by set of tests \(T \)
- Test path is a complete execution from a start node to a final node

- **Minimal** set of test paths = the fewest test paths that will satisfy test requirements
 - Taking any test path out will no longer satisfy the criterion
Mapping: Test Cases – Test Paths

Deterministic software: test always executes the same test path

- test 1
- test 2
- test 3
 - many-to-one
 - Test Path 1

Non-deterministic software: the same test can execute different test paths

- test 1
- test 2
- test 3
 - many-to-many
 - Test Path 1
 - Test Path 2
 - Test Path 3
Example Mapping
Test Cases – Test Paths

Test case t1: (a=0, b=1) \rightarrow [Test path p1: 1, 2, 4, 3]
Test case t2: (a=1, b=1) \rightarrow [Test path p2: 1, 4, 3]
Test case t3: (a=2, b=1) \rightarrow [Test path p3: 1, 3]

[AO, page 111, Figure 7.5]
Graph Coverage Criteria

Graph coverage criteria define test requirements TR in terms of properties of test paths in a graph G

Steps:

1. Develop a model of the software as a graph
2. A test requirement is met by visiting a particular node or edge or by touring a particular path

Test requirements (TR)

- Describe properties of test paths

Test criterion

- Rules that define test requirements
Graph Coverage Criteria

Satisfaction

• Given a set TR of test requirements for a criterion C, a set of tests T satisfies C on a graph if and only if for every test requirement in TR, there is a test path in $\text{path}(T)$ that meets the test requirement tr

Two types

1. **Structural coverage criteria**
 - Define a graph just in terms of nodes and edges

2. **Data flow coverage criteria**
 - Requires a graph to be annotated with references to variables
Graph Coverage Criteria

Structural Coverage Criteria

- Node Coverage (NC)
 - Statement coverage
- Edge Coverage (EC)
 - Branch coverage
- Edge-Pair Coverage (EPC)
- Complete Path Coverage (CPC)
- Prime Path Coverage (PPC)

Data Flow Coverage Criteria

- All-Defs Coverage (ADC)
- All-Uses Coverage (AUC)
- All-du-Paths Coverage (ADUPC)
Node Coverage (NC)

Node Coverage (NC) means that every reachable node in the graph is contained in the test set. Formally, if TR is the set of nodes covered by a test set T, then TR contains each reachable node in the graph G.

Given a graph G with nodes $N = \{1, 2, 3, 4, 5, 6, 7\}$ and edges $E = \{(1,2), (1,3), (2,4), (3,4), (4,5), (4,6), (5,7), 6,7\}$, the test set $TR = \{1, 2, 3, 4, 5, 6, 7\}$ satisfies Node Coverage.

Test paths $p_1 = [1, 2, 4, 5, 7]$ and $p_2 = [1, 3, 4, 6, 7]$ cover all nodes in the graph.

If a test set $T = \{t1, t2\}$, where $\text{path}(t1) = p1$ and $\text{path}(t2) = p2$, then T satisfies Node Coverage on G.
Edge Coverage (EC)

EC: TR contains each reachable path of length up to 1, inclusive, in G

“length up to 1” – allows for graphs with one node and no edges

Node $N = \{1, 2, 3, 4, 5, 6, 7\}$

Edge $E = \{(1,2), (1,3), (2,4), (3,4), (4,5), (4,6), (5,7), (6,7)\}$

Test path $p_1 = [1, 2, 4, 5, 7]$
Test path $p_2 = [1, 3, 4, 6, 7]$

If a test set $T = \{t_1, t_2\}$,
where path(t_1) = p_1 and path(t_2) = p_2,
Then T satisfies Edge Coverage on G
Difference between NC and EC

Node $N = \{1, 2, 3\}$
Edge $E = \{(1, 2), (1, 3), (2, 3)\}$

NC: $TR = \{1, 2, 3\}$
Test path = [1, 2, 3]

EC: $TR = \{(1, 2), (1, 3), (2, 3)\}$
Test paths = [1, 2, 3], [1, 3]

NC and EC are only different when there is an edge and another subpath between a pair of nodes (as in an “if-else” statement).
Edge-Pair Coverage (EPC)

EPC: TR contains each reachable path of length up to 2, inclusive, in G

“length up to 2” – allows for graphs that have 0, 1, or 2 edges

Node $N = \{1, 2, 3, 4, 5, 6, 7\}$

Edge $E = \{(1,2), (1,3), (2,4), (3,4), (4,5), (4,6), (5,7), (6,7)\}$

$TR = \{(1,2,4), (1,3,4), (2,4,5), (2,4,6), (3,4,5), (3,4,6), (4,5,7), (4,6,7)\}$

Test path $p1 = [1, 2, 4, 5, 7]$
Test path $p2 = [1, 3, 4, 5, 7]$
Test path $p3 = [1, 2, 4, 6, 7]$
Test path $p4 = [1, 3, 4, 6, 7]$

EPC requires pairs of edges, or subpaths of length 2 – covering multiple edges
Graph Coverage Criteria Subsumption

- Complete Path Coverage (CPC)
- Prime Path Coverage (PPC)
- Edge-Pair Coverage (EPC)
- Edge Coverage (EC)
- Node Coverage (NC)
- All-DU-Paths Coverage (ADUP)
- All-uses Coverage (AUC)
- All-defs Coverage (ADC)
- Complete Round Trip Coverage (CRTC)
- Simple Round Trip Coverage (SRTC)