Graph: Structural Coverage Criteria

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 7]
Structures for Criteria-Based Testing

Four structures for modeling software

- **Input space**
 - Graph
 - Source
 - Design
 - Specs
 - Use cases
 - Applied to: R--R
- **Logic**
 - Source
 - Specs
 - FSMs
 - DNF
 - Applied to: RI-R
- **Syntax**
 - Source
 - Models
 - Integration
 - Inputs
 - Applied to: RIPR
Today’s Objectives

• Understand how to use graph to define criteria and design tests
 • Node coverage (NC)
 • Edge coverage (EC)
 • Edge-pair coverage (EPC)
 • Complete Path Coverage (CPC)
 • Prime Path Coverage (PPC)
 • Simple paths and prime paths

• Touring, sidetrips, and detours

• Dealing with infeasible test requirements

• Graph derived from various software artifacts (coming soon)
Graph Coverage Criteria

Graph coverage criteria define test requirements TR in terms of properties of test paths in a graph G.

Steps:

1. Develop a model of the software as a graph
2. A test requirement is met by visiting a particular node or edge or by touring a particular path

Test requirements (TR)

- Describe properties of test paths

Test criterion

- Rules that define test requirements
Graph Coverage Criteria

Satisfaction

- Given a set TR of test requirements for a criterion C, a set of tests T satisfies C on a graph if and only if for every test requirement in TR, there is a test path in $\text{path}(T)$ that meets the test requirement tr.

Two types

1. **Structural coverage criteria**
 - Define a graph just in terms of nodes and edges.

2. **Data flow coverage criteria**
 - Requires a graph to be annotated with references to variables.
Graph Coverage Criteria

Structural Coverage Criteria

- Node Coverage (NC)
 - Statement coverage
- Edge Coverage (EC)
 - Branch coverage
- Edge-Pair Coverage (EPC)
- Complete Path Coverage (CPC)
- Prime Path Coverage (PPC)

Data Flow Coverage Criteria

- All-Def Coverage (ADC)
- All-Uses Coverage (AUC)
- All-du-Paths Coverage (ADUPC)
Node Coverage (NC)

NC: TR contains each reachable node in G

Node \(N = \{1, 2, 3, 4, 5, 6, 7\} \)

Edge \(E = \{(1,2), (1,3), (2,4), (3,4), (4,5), (4,6), (5,7), 6,7\}\)

Test path \(p1 = [1, 2, 4, 5, 7] \)

Test path \(p2 = [1, 3, 4, 6, 7] \)

If a test set \(T = \{t1, t2\}\),
where path\((t1) = p1 \) and path\((t2) = p2 \),
Then \(T \) satisfies Node Coverage on G
Edge Coverage (EC)

EC: TR contains each reachable path of length up to 1, inclusive, in G

“length up to 1” – allows for graphs with one node and no edges

Node $N = \{1, 2, 3, 4, 5, 6, 7\}$

Edge $E = \{(1,2), (1,3), (2,4), (3,4), (4,5), (4,6), (5,7), (6,7)\}$

$TR = \{(1,2), (1,3), (2,4), (3,4), (4,5), (4,6), (5,7), (6,7)\}$

Test path $p1 = [1, 2, 4, 5, 7]$

Test path $p2 = [1, 3, 4, 6, 7]$

If a test set $T = \{t1, t2\}$, where $\text{path}(t1) = p1$ and $\text{path}(t2) = p2$,
Then T satisfies Edge Coverage on G
Difference between NC and EC

Node $N = \{1, 2, 3\}$
Edge $E = \{(1,2), (1,3), (2,3)\}$

NC: TR = \{1,2, 3\}
Test path = [1, 2, 3]

EC: TR = \{(1,2), (1,3), (2,3)\}
Test paths = [1, 2, 3], [1, 3]

NC and EC are only different when there is an edge and another subpath between a pair of nodes (as in an “if-else” statement)
Edge-Pair Coverage (EPC)

EPC: TR contains each reachable path of length up to 2, inclusive, in G

“length up to 2” – allows for graphs that have 0, 1, or 2 edges

Node $N = \{1, 2, 3, 4, 5, 6, 7\}$

Edge $E = \{(1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7)\}$

$TR = \{(1,2,4), (1,3,4), (2,4,5), (2,4,6), (3,4,5), (3,4,6), (4,5,7), (4,6,7)\}$

Test path $p1 = [1, 2, 4, 5, 7]$

Test path $p2 = [1, 3, 4, 5, 7]$

Test path $p3 = [1, 2, 4, 6, 7]$

Test path $p4 = [1, 3, 4, 6, 7]$

EPC requires pairs of edges, or subpaths of length 2 – covering multiple edges
Complete Path Coverage (CPC)

CPC: TR contains all paths in G

Node $N = \{1, 2, 3, 4, 5, 6, 7\}$

Edge $E = \{(1,2), (1,3), (2,3), (3,4), (3,5), (4,7), (5,7)\}$

List all test paths:
- Test path $p1 = [1, 2, 3, 4, 7]$
- Test path $p2 = [1, 2, 3, 5, 7]$
- Test path $p3 = [1, 3, 4, 7]$
- Test path $p4 = [1, 3, 5, 7]$
CPC: Graph with Loop

Node $N = \{1, 2, 3, 4, 5, 6, 7\}$

Edge $E = \{(1,2), (1,3), (2,3), (3,4), (3,5), (4,7), (5,7), (5,6), (6,5)\}$

List all test paths:

$[1, 2, 3, 4, 7], [1, 2, 3, 5, 7], [1, 3, 4, 7], [1, 3, 5, 7], [1, 2, 3, 5, 6, 5, 7], [1, 2, 3, 5, 6, 5, 6, 5, 7], [1, 2, 3, 5, 6, 5, 6, 5, 6, 5, 7], ...$

Impossible if a graph has a loop ≈ infinite number of paths ≈ infinite number of test requirements
Handling Loops in Graphs

Attempts to deal with loops:

- 1970s: Execute cycles once ([5, 6, 5] in previous example)
- 1980s: Execute each loop, exactly once
- 1990s: Execute loops 0 times, once, more than once
- 2000s: Prime paths (touring, sidetrips, and detours)
Simple Paths

Path from node n_i to n_j that is no internal loops

• A loop is a simple path

List simple paths: 31 simple paths

[1,2,3,4,7], [1,2,3,5,7], [1,2,3,5,6], [1,2,3,4], [1,2,3,5], [1,3,4,7], [1,3,5,7], [1,3,5,6], [2,3,4,7], [2,3,5,7], [2,3,5,6], [1,2,3], [1,3,4], [1,3,5], [2,3,4], [2,3,5], [3,4,7], [3,5,7], [3,5,6], [5,6,5], [6,5,6], [6,5,7], [1,2], [1,3], [2,3], [3,4], [3,5], [4,7], [5,7], [5,6], [6,5]
Prime Paths

Simple path that is not subpath of any other simple path

List prime paths: 9 prime paths
- [1,2,3,4,7], [1,2,3,5,7], [1,2,3,5,6],
- [1,3,4,7], [1,3,5,7], [1,3,5,6],
- [5,6,5], [6,5,6], [6,5,7]

Execute loop 0 time
Execute loop once
Execute loop more than once
Prime Path Coverage (PPC)

- Keep the number of test requirements down
- For a given infeasible prime path that consists of some feasible simple paths, replace the infeasible prime path with relevant feasible subpaths

PPC: TR contains each prime path in graph G
Note on PPC

• PPC does not subsume EPC

• If a node \(n \) has an edge to itself ("self edge"), EPC requires \([n, n, m]\) and \([m, n, n]\)

• \([n, n, m]\) and \([m, n, n]\) are not simple paths (prime paths)

List EPC requirements:

\[
TR = \{ [1,2,3], [1,2,2], [2,2,3], [2,2,2] \}
\]

List PPC requirements:

\[
TR = \{ [1,2,3], [2,2] \}
\]
Touring, Sidetrips, and Detours

Touring the prime path [1, 2, 3, 5, 6] without sidetrips or detours

Touring with a sidetrip

Touring with a detour

[AO, Figures 7.8, 7.9]
Infeasible Test Requirements

• An infeasible test requirement cannot be satisfied
 • Unreachable statement (dead code)
 • Subpath that can only be executed with a contradiction ($X > 0$ and $X < 0$)

• Most test criteria have some infeasible test requirements
• It is usually undecidable whether all test requirements are feasible
• When sidetrips are not allowed, many structural criteria have more infeasible test requirements
• Always allowing sidetrips weakens the test criteria

Practical recommendation—Best Effort Touring
 – Satisfy as many test requirements as possible without sidetrips
 – Allow sidetrips to try to satisfy remaining test requirements
Graph Coverage Criteria Subsumption

- Complete Path Coverage (CPC)
- Prime Path Coverage (PPC)

All-DU-Paths Coverage (ADUP)
- All-uses Coverage (AUC)
- All-defs Coverage (ADC)

Complete Round Trip Coverage (CRTC)

Edge-Pair Coverage (EPC)
- Edge Coverage (EC)
- Node Coverage (NC)

Simple Round Trip Coverage (SRTC)