Schema Refinement
Functional Dependencies

CS 4750
Database Systems

[A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, Ch.7]

[Ricardo and Urban, Database Illuminated, Ch.6]
[https://www.w3schools.in/dbms/database-normalization/]

Spring 2024 — University of Virginia © Praphamontripong

https://www.w3schools.in/dbms/database-normalization/

Recap: E-R Diagram

Convert the following ER into Schema statements

Person

' @ Country

Course
Is a Is a

Many-to-one fact
??

@ Student

Person(id, name)
Born(Person.id, Country.name)

Total participation fact
??

Country(name, region)
Course(courselD, dept)

Person(id, name, Country.name)
Student(People.id, major)
Faculty(People.id, salary)

mTakes(Student.id, Course.courselD)

© Praphamontripong

Spring 2024 — University of Virginia

revisit

Database Design Process

Interact with users and domain experts
to characterize the data

V

Translate requirements into <>ED\/<> Q;D
conceptual model (E-R diagrams) <

| samm
Convert the model to relational model M N
(schema and constraints)

Normalize and develop I A .
conceptual (logical) schema —
of the database

I I
Develop physical schema
(partitioning and indexing) .

Spring 2024 — University of Virginia © Praphamontripong

Goals for 02/02 - 02/09

Figure out the fundamentals of what makes a good DB
schema and being able to apply them to design a DB

- Avoid redundancy and anomalies
- Ensure data interrelationships

How:
- Recognize anomalies (things we want to avoid)
- Understand Functional Dependencies (FDs)
- Understand closures and formal definitions of keys
- Understand decomposition and normalization (3NF and BCNF)

Spring 2024 — University of Virginia © Praphamontripong

Why Worry about Sound Structures?

If your database structure isn’t sound, what could happen?
Let’s share opinion / idea / experience !!

Does “"Bad” database design impact any of the following?
- Data manipulation — adding, updating, deleting
- Retrieving data
- Data integrity, consistency
- Table relationships

Spring 2024 — University of Virginia © Praphamontripong

Let’'s Consider: Friend Book

Make a simple friend book that can:

- Hold info about friend’s name, email, phone, and city
- Associate friends with the city they live in
- Associate friends with any phone numbers they have

_name | ___email | __phone | __ city

Humpty humpty@uva.edu 434-111-1111 Charlottesville
Dumpty dumpty@uva.edu 434-222-1111 Charlottesville
Dumpty dumpty@uva.edu 434-222-2222 Charlottesville
Mickey mickey@uva.edu 434-333-3333 Fairfax
Minnie minnie@uva.edu 434-555-5555 Alexandria

This instance does the job ... but are there issues?

Spring 2024 — University of Virginia © Praphamontripong

Friend Book: Redundancy Anomaly

Make a simple friend book that can:

- Hold info about friend’s name, email, phone, and city
- Associate friends with the city they live in
- Associate friends with any phone numbers they have

_name | ___email | __phone | __ city

Humpty humpty@uva.edu 434-111-1111 Charlottesville
Dumpty dumpty@uva.edu 434-222-1111 Charlottesville
Dumpty dumpty@uva.edu 434-222-2222 Charlottesville
Mickey mickey@uva.edu 434-333-3333 Fairfax
Minnie minnie@uva.edu 434-555-5555 Alexandria

Redundancy - part of data can be derived from other parts

Spring 2024 — University of Virginia © Praphamontripong

Friend Book: Update Anomaly

Make a simple friend book that can:

- Hold info about friend’s name, email, phone, and city
- Associate friends with the city they live in
- Associate friends with any phone numbers they have

_name | ___email | __phone | __ city

Humpty humpty@uva.edu 434-111-1111 Charlottesville

Dumpty dumpty@uva.edu 434-222-1111 -charettesvite— Norfolk ?7?
Dumpty dumpty@uva.edu 434-222-2222 Charlottesville

Mickey mickey@uva.edu 434-333-3333 Fairfax

Minnie minnie@uva.edu 434-555-5555 Alexandria

What if Dumpty moves to Norfolk
- Redundancy - possible inconsistency, slow update
- Update once? Update all?

Spring 2024 — University of Virginia © Praphamontripong

Friend Book: Deletion Anomaly

Make a simple friend book that can:

- Hold info about friend’s name, email, phone, and city
- Associate friends with the city they live in
- Associate friends with any phone numbers they have

_name | ___email | __phone | __ city

Humpty humpty@uva.edu 434-111-1111 Charlottesville
Dumpty dumpty@uva.edu 434-222-1111 Charlottesville
Dumpty dumpty@uva.edu 434-222-2222 Charlottesville
Mickey mickey@uva.edu 434-333-3333 Fairfax
Minnie minnie@uva.edu 434-555-5555 Alexandria

How to delete Minnie’s phone

- Delete the entire tuple - lose Minnie
- phone - NULL?

Spring 2024 — University of Virginia © Praphamontripong

Friend Book: Prevent Data Anomalies

Decompose the relation, separate unrelated attributes
“name | emal | phone | ity
Humpty humpty@uva.edu 434-111-1111 Charlottesville
Dumpty dumpty@uva.edu 434-222-1111 Charlottesville
Dumpty dumpty@uva.edu 434-222-2222 Charlottesville
Mickey mickey@uva.edu 434-333-3333 Fairfax
Minnie minnie@uva.edu 434-555-5555 Alexandria

o~ N\

_name | email | city Ju emal | phone |

Humpty humpty@uva.edu Charlottesville humpty@uva.edu 434-111-1111
Dumpty dumpty@uva.edu Charlottesville dumpty@uva.edu 434-222-1111
Mickey mickey@uva.edu Fairfax dumpty@uva.edu 434-222-2222
Minnie minnie@uva.edu Alexandria mickey@uva.edu 434-333-3333

minnie@uva.edu 434-555-5555

How can we systematically avoid redundancy and anomaly?

Functional Dependencies

Spring 2024 — University of Virginia © Praphamontripong

Another Example: TA Info
Problems with "Bad” DB Design

Consider info about TAs

- Associate year with the hourly_rate

computinglD | __name | __year | hourly_rate
4 12 20

htly Humpty

dt2y Dumpty 3 10 20
md3y Mickey 4 12 15
mn4e Minnie 4 12 16
dh5h Duhhuh 3 10 10

The hourly_rate of Humpty can be derived from the hourly_rate of Mickey (or Minnie)
since they are all 4th year and we know year determines hourly_rate.

Redundancy exists because of the existence of integrity constraints,
in particular Functional Dependencies (FD) [More functional dependencies later]

[Note: the hourly_rates in this example are made up. They are not associated with any organization.]
Spring 2024 — University of Virginia © Praphamontripong

TA Info: Update Anomaly (2)
T L nourly_rate

htly Humpty 4 —42— 1 20
dt2y Dumpty 3 10 20
md3y Mickey (1> 15
mn4e Minnie 4 12 16
dh5h Duhhuh 3 10 10

- What if we attempt to update hourly_rate of Humpty?
- Only one copy of hourly_rate has been updated

- Hourly_rate determined by year=4 appears in multiple tuples in
the table

- Cannot change hourly_rate in just the 1st tuple

[Note: the hourly_rates in this example are made up. They are not associated with any organization.]
Spring 2024 — University of Virginia © Praphamontripong

TA Info: Insertion Anomaly (3)

computingID m hourly_atc

htly Humpty

dt2y Dumpty 3 10 20
md3y Mickey 4 12 15
mn4e Minnie 4 12 16
dh5h Duhhuh 3 10 10
aw6e Awesome 2 2?2 Null 2> 10

- What if we want to insert a new employee, who is in 2Md year,
but we don’t know the hourly rate for the 2nd year?

- Cannot insert a new employee into the table

[Note: the hourly_rates in this example are made up. They are not associated with any organization.]
Spring 2024 — University of Virginia © Praphamontripong

TA Info: Deletion Anomaly (4)
compuingD L _name L year L boury_ate | hours vorkod

htly Humpty

ey ARy 2 -0 20

md3y Mickey 4 12 15

mn4e Minnie 4 12 16
—dhEhn DR = +0 0

- What if we delete all employees who are in 3" year?

- Lose information about the hourly_rate for 3 year

[Note: the hourly_rates in this example are made up. They are not associated with any organization.]
Spring 2024 — University of Virginia © Praphamontripong

TA Info: Potential Solution (5)

Decompose the relation, separate unrelated attributes

computinglD m year hourly rate

htly Humpty

dt2y Dumpty 3 10 20
md3y Mickey 4 12 15
mn4e Minnie 4 12 16
dhsh Duhhuh _3 10 10

computinglD m hourly_rate
4 12

htly Humpty 4

dt2y Dumpty 3 20 3 10
md3y Mickey 4 15

mn4e Minnie 4 16

dh5h Duhhuh 3 10

Functional Dependencies - to the rescue!!

[Note: the hourly_rates in this example are made up. They are not associated with any organization.]
Spring 2024 — University of Virginia © Praphamontripong

General Design Guidelines

- Semantics of attributes should be self-evident
- Avoid redundancy - between tuples, relations

- Avoid NULL values in tuples
- If certain tuples should not exist, don't allow them

Database design = process or organizing data into a
database model by considering data needs to be stored and
the interrelationship of the data

Database design is about
characterizing data and the organizing data

How to describe properties How to organize data to promote
we know or see in the data ease of use and efficiency

Spring 2024 — University of Virginia © Praphamontripong

Data Interrelationships

Rules that govern data
- Domain knowledge - things in the real world
- Pattern analysis

ATA_Emp(computingID, name, year, hourly_rate, hours_worked)

computingID -mm- A

htly Humpty

dt2y Dumpty 3 10 20
md3y Mickey 4 12 15
mn4e Minnie 4 12 16
dh5h Duhhuh 3 10 10

We can:
- Associate computingID with name computing - name
- Associate year with hourly_rate year =2 hourly_rate

[Note: the hourly_rates in this example are made up. They are not associated with any organization.]
Spring 2024 — University of Virginia © Praphamontripong

Functional Dependencies (FDs)

- Describe data interrelationships

- Constraints on the set of relations
- Determine how to break/decompose a relation

“determines / implies”

A, A, .., A > B, B, ... B,

- For each pair of tuples t; and &t, in a relation r

- If two tuples agree on the attributes, A;, A,, ..., A,
- Then they must also agree on the attributes B;, B>, ..., B,

Spring 2024 — University of Virginia © Praphamontripong

Functional Dependencies (FDs)

- A relation can have multiple functional dependencies

- Example: schema of relation R(A, B, C, D)
FDs: { A>B,B>C,C->CD}

- FD holds over a relation R if, for every allowable instance
r of R, r satisfies the FD

- Given some instance r of R, we can check if it violates some
FD or not

t1.X = t2.X but (t1.Y # t2.Y

- We cannot tell if FD holds over R by looking at an instance
(cannot prove non-existence of violation)

- This is the same for all integrity constraints

Spring 2024 — University of Virginia © Praphamontripong

Examples
ompuingo L nene e Loty rouns e

htly Humpty

dt2y Dumpty 3 10 20
md3y Mickey) 12 15
mn4e Minnie 4 12 16
dh5h Duhhuh 3 10 10

year = hourly_rate holds

computing|D m roury_iat

htly Humpty

dt2y Dumpty 3 10 20
md3y Mickey =) 12 i 15
mn4e Minnie 4 12 16
dh5h Duhhuh 3 10 10

year = hourly_rate does not hold

Spring 2024 — University of Virginia © Praphamontripong

Let's Try: FDs
A | B | C

>
@]

1 aa X

1 aa X

2 [bb | y
[2 Lec J v]

3 bb Z

Which of the following is functional dependency?

a2 A>B
(b)) B>C
(c) AB > C Possible
Not enough information
(d) A>C (cannot prove non-existence of violation)
k) C>B

Spring 2024 — University of Virginia © Praphamontripong

Let’'s Try: FDs (2)
 EmpD | Name | xPhone | Position _

E1001 Mickey 6543 Clerk

E2353 Minnie 1234 Helpdesk
E4567 Daisy 9876 Salesrep
E1234 Donald 9876 Salesrep
E9372 Humpty 1234 Lawyer

List possible FD(s)

EmpID = Name, xPhone, Position

Spring 2024 — University of Virginia © Praphamontripong

More Example
Foiciiane cotegory L coior) pepartment Lprice

Beyblade Gadget Green Toys

Drone Gadget Green Toys 80

Do all the following FDs hold on this instance?

ProductName - Color .
Possible
Category - Department

—Coter—Cotegerny—="Prce—

If we can be sure that every instance of R will be one in which
a given FD is true, then we say that R satisfies the FD

If we say that R satisfies an FD, we are stating a constraint on R

Spring 2024 — University of Virginia © Praphamontripong

Interesting Observation

If all these FDs are true:

ProductName ->|Color

Category - Department

Color,| Category - Price

Then, this FD also holds:

ProductName, Category - Price

Spring 2024 — University of Virginia © Praphamontripong

If we find out from
application domain that
a relation satisfies
some FDs, it does not
mean that we found all
the FDs that it satisfies.

There may be more
FDs implied by the
ones we have.

Reasoning about FDs

To use FDs to break a relation, focus on a key and list all
possible FDs

Given some FDs, infer additional FDs using the following rules:

Reflexivity if b subseta,a> b

Augmentation if a > b, then ac > bc

Transitivity ifa>bandb > c, thena->c

Union ifa > banda > c, then a 2> bc
Decomposition if a > bc, then a > b and a 2> c (separately)

Pseudo-transitivity ifa > bandcb > d, thenac > d

There are many rules that let us infer that one FD X - A holds in any relation
instance that satisfies some other given set of FDs. To verify that X - A holds,
compute the closure of X, using the given FDs to expand X until it includes A

Spring 2024 — University of Virginia © Praphamontripong

Example: Reasoning

Supposed we know
custID 2 name

Yes!
Can we conclude the following? | Adding more attributes
_ to the antecedent can
custID, hair_color - name never remove

attributes in the
consequent

Spring 2024 — University of Virginia © Praphamontripong

Example: Reasoning (2)

Supposed we know
custID 2 name

No!
Can we conclude the following? Impossible to introduce
_ hair_color to the
custID - name, hair_color consequent without

also introducing it to
the antecedent

Spring 2024 — University of Virginia © Praphamontripong

Attribute Closure and F+

- Attribute Closure (o+) = all FDs a particular attribute can imply

- Closure of F (F+) = a set of all FDs that are implied by F

- An FD fis logically implied by a set of FDs F if f holds whenever
all FDs in F hold

- To compute the closure of a set of functional dependencies F

F+ = F
repeat
for each functional dependency fin F+
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F+
for each pair of functional dependencies f1 and f2 in F+
if f1 and f2 can be combined using transitivity

then add the resulting functional dependency to F+
until F+ does not change any further

Spring 2024 — University of Virginia © Praphamontripong

Example: Attribute Closure

Given R(A,B,C)

FDs ={A—>B,B>C}
Compute the attribute closures for all attribute and combination
of attributes. Then, think about what can inferred.

A Te [c [ae [Ac | Be | Asc.
A v v v v v v v A+ = ABC

B B+ =
C C+ =
AB AB+ =
AC AC+ =
BC BC+ =

ABC ABC+ =

Spring 2024 — University of Virginia © Praphamontripong

Example: Attribute Closure

Given R(A,B,C)

FDs ={A—>B,B>C}
Compute the attribute closures for all attribute and combination
of attributes. Then, think about what can inferred.

A Te [c [as [Ac | BC | ABc.
A v Vv v Vv v v v A+ = ABC

B v v v B+ = BC

C v C+=C

AB v v v v v v v AB+ = ABC
AC v v v v v v v AC+ = ABC
BC v v v BC+ = BC
ABC v v v v v v v ABC+ = ABC

Spring 2024 — University of Virginia © Praphamontripong

Examplel: Computing F+

Let’s do this together
Given R(A,B,C,D,E)

FDs={A->C,B->B,C>BD,D>E}
Compute F+

(1) write all LHS (2) copy FDs as is (3) apply reflexivity (4) apply transitivity
& remaining

A A > C A > AC A > ABCDE

B - B > B B > B B > B

c = C > BD C - BCD C - BCDE

D - D > 5 D > DE D > DE

E - E > E > E E > F
F+ = { A > ABCDE, , C 2> BCDE, D - DE, >

Spring 2024 — University of Virginia © Praphamontripong

Example2: Computing F+

Let’s do this together
Given R(A,B,C,D,E)

FDs = {A->BC,B->D,CD>E}
Compute F+

[Decompose: A>A,A->B,A~> C]

(1) write all LHS (2) copy FDs as is (3) apply reflexivit (4) apply transitivity
& remaining

A 2 A > BC A > ABC A > ABCD
B > B > D (B > BD]/B > BD
cC - cC > C > C C > C

D - D > D > D D > D
E - E > E > E E > F
CD - CD > E CD > CDE CD > CDE

Spring 2024 — University of Virginia © Praphamontripong

Example2: Computing F+ (cont.)

Decompose: A>A,A>B, A>C, A->D
Union: A> Cand A > D, then A > CD

] Let’s do this together

(from previous page)

(4) apply transitivity (5) apply transitivity
A > ABCD A > ABCDE
B -> B D B -> B D
C - C C - C
D - D D - D
E - E E - E
[cD > CDE CD > CDE
F+ = { A > ABCDE, B > BD, , , CD > CDE }

Spring 2024 — University of Virginia © Praphamontripong

Example3: F+ to Candidate Key

Consider a relation Stocks(B, O, I, S, Q, D), whose attributes may be
thought of informally as broker, office (of the broker), investor, stock,
quantity (of the stock owned by the investor), and dividend (of the stock).
Let the set of FDs for Stocks be

FDs={S->D,I=>B,IS>Q,B>0}
List all candidate keys for the Stocks relation

Usual procedure: reasoning / computing the attribute closures.

Observation: None of the RHS of FDs contains I and s. Thus, we
know that attribute T and s must be part of any keys.

Let's r ning FD
et SS ea;o gS D > What if we want to find all superkeys?

I - BOI
IS = BOISQD 1S is the only minimal superkey
B - BO (candidate key) for the Stocks relation

RHS = right hand side
Spring 2024 — University of Virginia © Praphamontripong

Wrap-Up

Problems with "Bad” DB design

Characterizing data / describe properties of data with Functional
dependencies (FDs)

Reasoning about FDs

Attribute closure and F+

What's next?
« Fine-tuning database structures and normalization

Spring 2024 — University of Virginia © Praphamontripong

