More Practice 3NF and BCNF

CS 4750 Database Systems

Practice 1: 3NF and BCNF

Consider a relation Stocks(B, O, I, S, Q, D), whose attributes may be thought of informally as broker, office (of the broker), investor, stock, quantity (of the stock owned by the investor), and dividend (of the stock). Let the set of FDs for Stocks be

$$
\text { FDs }=\{S \rightarrow D, I \rightarrow B, I S \rightarrow Q, B \rightarrow O\}
$$

1. Verify that the given set of FDs is a minimal basis

Minimal basis \sim Fc

To verify that the given FDs are their own minimal basis, we need to check:

1. Can any of the FDs be removed without losing the dependencies?

No. If we remove any one of the four FDs, the remaining FDs do not imply the removed FD.
2. Can any attributes be removed from LHS and/or RHS without losing the dependencies?

No. If we remove any attribute, we lose the dependency
We can conclude that the given set of FDs is the minimal basis.

Practice 1: 3NF and BCNF (2)

Stocks(B, O, I, S, Q, D)
FDs $=\{S \rightarrow D, I \rightarrow B, I S \rightarrow Q, B \rightarrow O\}$
2. Use 3NF, decompose the given Stocks relation into proper relations

The first step is to compute Canonical Cover (Fc).

$$
\begin{array}{ll}
S & \rightarrow D \\
I & \rightarrow \\
\text { IS } & \rightarrow Q \\
B & \rightarrow
\end{array}
$$

There is no trivial FD, no reflexivity, no extraneous attr. Thus, Fc = the given set of FDs. (note: Fc is the minimal basis of the given set of FDs).

To convert the given relation into 3NF, put the left-hand-side (LHS) and the right-handside (RHS) of each FD in Fc together in one relation. Thus, Stocks ($B, 0, I, S, Q, D$) becomes $R_{1}(S, D), R_{2}(I, B), R_{3}(I, S, Q)$, and $R_{4}(B, O)$. Alternatively, we can write in another format: SD // IB // ISQ // BO

Practice 1: 3NF and BCNF (3)

Stocks(B, O, I, S, Q, D)
FDs $=\{S \rightarrow D, I \rightarrow B, I S \rightarrow Q, B \rightarrow O\}$

Decomposed relations: SD // IB // ISQ // BO

3. Show that the decomposed relations are in 3NF

1. Lossless join

Start with a relation of the decomposition with a superkey; thus consider ISQ where IS is a key. Compute attribute closure of IS. IS+ = BOISQD (or IS -> BOISQD), thus can reconstruct the original relation.

Check if (R1 intersect R2) != \{ \} and (R1 intersect R2) is a superkey of either R1 or R2 (or both), where R1 and R2 are any two decomposed relations.

```
SD and ISQ: S -> D (S is a superkey of SD)
IB and ISQ: I >> B (I is a superkey of IB)
IB and BO: B -> O (B is a superkey of BO)
```


2. Dependency preserving

Consider all decomposed relations. Check if the given set of FDs can be verified within the decomposed relations.

```
S -> D can be verified within SD
I >B B can be verified within IB
IS -> Q can be verified within ISQ
B -> O can be verified within BO
```

No transitive dependency. Thus, satisfy dependency preserving property

Practice 1: 3NF and BCNF (4)

Stocks(B, O, I, S, Q, D)
FDs $=\{S \rightarrow D, I \rightarrow B, I S \rightarrow Q, B \rightarrow O\}$

Decomposed relations: SD // IB // ISQ // BO
4. Are the decomposed relations in BCNF?

In BCNF. No violation.

In addition to checking for lossless join property, we need to verify that there is no nonkey dependency in each decomposed relation.

```
For every non-trivial FD, X -> A, X is a superkey
```

Consider each decomposed relation (above), all LHS of the given FD is a superkey of the relation. Thus, no non-key dependency

Ready for the next one ??

Practice 2: 3NF

Consider the following relation and functional dependencies
R(A, B, C, D)
FDs $=\{C \rightarrow A, C \rightarrow D, C \rightarrow C, A B \rightarrow C\}$

1. Decompose the given relation $R(A, B, C, D)$ using $3 N F$
2. Discuss to show that the decomposed relations are in $3 N F$

Fc:

$$
\begin{aligned}
& C \rightarrow A D \\
& A B \rightarrow C
\end{aligned}
$$

Decomposed relations:
ACD // ABC
or written as R1(ACD) and R2(ABC)

Practice 2: 3NF (2)

2. Discuss to show that the decomposed relations are in 3NF

We need to show that the decomposed relations ACD // ABC satisfy lossless join and dependency preserving. $\mathrm{Fc}=\{\mathrm{C} \rightarrow \mathrm{AD}, \mathrm{AB} \rightarrow \mathrm{C}\}$

Lossless join -- check if (R1 intersect R2) $!=\{ \}$ and (R1 intersect R2) is a superkey of either R1 or R2 (or both)

- Let R1 = ACD and R2 = ABC, (R1 intersect R2) = AC
- Consider ACD and check if (R1 intersect R2) is a superkey of ACD.
- Since we know that $C \rightarrow$ AD
- $C \rightarrow C$, thus $C \rightarrow A C D$ (reflexive)
- A \rightarrow A, we can augment the above FD by adding attribute A to the left hand side, thus AC \rightarrow ACD
- Therefore, we can conclude that AC (which is R1 intersect R2) is a superkey of ACD (R1)

Practice 2: 3NF (3)

2. Discuss to show that the decomposed relations are in 3NF

Decomposed relations $A C D / / A B C, F c=\{C \rightarrow A D, A B \rightarrow C\}$
Lossless join -- check no loose, no gain

- First, identify the superkey of the given relation $R(A B C D)$.
- Based on the given FDs, compute attribute closure.
- Any combination of attributes that contains $A B$ is a superkey. Thus, the only minimal superkey of $R(A B C D)$ is $A B$.
- Then, start with a relation of the decomposition with a superkey $A B$, which is $A B C$ (refer to Fc: $A B \rightarrow C$).
- Compute attribute closure of $A B$.
- To help us envision, from the decomposed relation $A B C$,
- Apply $A B \rightarrow C(F c), A B \rightarrow A B$ (reflexive), and $C \rightarrow A D$ (transitive), thus $A B \rightarrow A B C D$. That is, $A B C$ will be expanded to $A B C D$ (\sim reconstruct the original relation from this decomposition).
- Since $A B+=A B C D$ (i.e., $A B \rightarrow A B C D$), the decomposition satisfies lossless join property (no loose, no gain).

Practice 2: 3NF (4)

2. Discuss to show that the decomposed relations are in 3NF

Decomposed relations $A C D / / A B C, F c=\{C \rightarrow A D, A B \rightarrow C\}$

Dependency preserving

- Check if the given FDs $=\{C \rightarrow A, C \rightarrow D, C \rightarrow C, A B \rightarrow C\}$ can be verified within a single decomposed relation.
- Given FDs:
- $C \rightarrow$ A can be verified within ACD
- $C \rightarrow D$ can be verified within ACD
- C \rightarrow C can be verified within ACD
- Always true in any relation that contains C
- Given FD: $A B \rightarrow C$, we can verify it within $A B C$
- No transitive dependency.
- Thus, the decomposition satisfies dependency preserving property.

No 3NF violation

Ready for the next one ??

Practice 3: BCNF

Consider the following relation and functional dependencies R(A, B, C, D)
FDs $=\{C \rightarrow A, C \rightarrow D, C \rightarrow C, A B \rightarrow C\}$

1. Decompose the given relation $R(A, B, C, D)$ using $B C N F$
2. Discuss to show that the decomposed relations are in BCNF

Practice 3: BCNF (2)

2. Discuss to show that the decomposed relations are in BCNF

We need to show that the decomposed relations ACD // BC satisfy lossless join and For every non-trivial FD, $X \rightarrow$ Attribute(s), X is a superkey.

F+		
A	$\rightarrow A$	tr
B	$\rightarrow B$	tr
C	$\rightarrow A C D$	
D	$\rightarrow A B C D$	tr
$A B$	$\rightarrow A B C D$	sk

Lossless join -- check if (R1 intersect R2) != \{ \} and (R1 intersect R2) is a superkey of either R1 or R2 (or both)

- Let R1 = ACD and R2 = BC, (R 1 intersect R2) $=\mathrm{C}$
- Consider ACD and check if (R1 intersect R2) is a superkey of ACD.
- From F+, we can conclude that (R1 intersect R2) is a superkey for ACD (R1)
- Thus, the decomposition satisfies lossless join property.

Practice 3: BCNF (3)

2. Discuss to show that the decomposed relations are in BCNF

Decomposed relations $A C D / / B C, F D s=\{C \rightarrow A, C \rightarrow D, C \rightarrow C, A B \rightarrow C\}$
Lossless join -- check no loose, no gain

- First, identify the superkey of the given relation $R(A B C D)$.

F+	
$\mathrm{A} \rightarrow \mathrm{A}$	tr
$B \rightarrow B$	tr
$\mathrm{C} \rightarrow \mathrm{ACD}$	
$D \rightarrow \quad D$	tr
$A B \rightarrow$ ABCD	sk

- Based on the given FDs, compute attribute closure.
- Any combination of attributes that contains $A B$ is a superkey. Thus, the only minimal superkey of $R(A B C D)$ is $A B$.
- Then, start with a relation of the decomposition with a superkey $A B$, which is $A B C(A B \rightarrow C)$.
- Compute attribute closure of $A B$.
- To help us envision, from the decomposed relation $A B C$,
- Apply $A B \rightarrow C, A B \rightarrow A B$ (reflexive), and $C \rightarrow A D$ (transitive), thus $A B \rightarrow$ $A B C D$. That is, $A B C$ will be expanded to $A B C D$ (\sim reconstruct the original relation from this decomposition).
- Since $A B+=A B C D$ (i.e., $A B \rightarrow A B C D$), the decomposition satisfies lossless join property (no loose, no gain).

Practice 3: BCNF (4)

2. Discuss to show that the decomposed relations are in BCNF

To verify, we need to show that the decomposed relations $A C D / / B C$ satisfy Iossless join and For every non-trivial FD, $\mathrm{X} \rightarrow$ Attribute(s), X is a superkey.

Given $\mathrm{FDs}=\{C \rightarrow A, C \rightarrow D, C \rightarrow C, A B \rightarrow C\}$

For every non-trivial $F D, X \rightarrow$ Attribute(s), \mathbf{X} is a superkey

- Consider ACD, we know that $C \rightarrow A C D$ (A and D have trivial FDs, so ignore)
- C is the only non-trivial $F D$ and C is a superkey of $A C D$.
- No non-key dependency in this decomposed relation.
- Consider BC, no non-key dependency.
- By default, a relation with 2 attributes is always in BCNF (even if there is no dependency at all).

No BCNF violation

Ready for the next one ??

Practice 4: 3NF

Consider the following relation and functional dependencies
R(A, B, C, D)
FDs $=\{A \rightarrow A B C, C \rightarrow D, A \rightarrow C, D \rightarrow D\}$

1. Decompose the given relation $R(A, B, C, D)$ using 3NF
2. Discuss to show that the decomposed relations are in 3NF

Fc:

$$
\begin{aligned}
& A \rightarrow B C \\
& C \rightarrow D
\end{aligned}
$$

Decomposed relations:
$A B C / / C D \quad$ or written as R1(ABC) and R2(CD)

Practice 4: 3NF (2)

2. Discuss to show that the decomposed relations are in 3NF

We need to show that the decomposed relations $A B C / / C D$ satisfy lossless join and dependency preserving. $\mathrm{Fc}=\{\mathrm{A} \rightarrow \mathrm{BC}, \mathrm{C} \rightarrow \mathrm{D}\}$

Lossless join -- check if (R1 intersect R2) != \{ \} and (R1 intersect R2) is a superkey of either R1 or R2 (or both)

- Let R1 $=A B C$ and $R 2=C D,(R 1$ intersect $R 2)=C$
- From Fc, we can conclude that (R1 intersect R2) is a superkey of CD (R2)

Practice 4: 3NF (3)

2. Discuss to show that the decomposed relations are in 3NF

Decomposed relations $A B C / / C D, F c=\{A \rightarrow B C, C \rightarrow D\}$

Lossless join -- check no loose, no gain

- First, identify the superkey of the given relation $R(A B C D)$.
- Based on the given FDs, compute attribute closure.
- Any combination of attributes that contains A is a superkey. Thus, the only minimal superkey of $R(A B C D)$ is A.
- Then, start with a relation of the decomposition with a superkey A, which is $A B C$ (refer to Fc: $A \rightarrow B C$).
- Compute attribute closure of A.
- To help us envision, from the decomposed relation $A B C$,
- Apply $A \rightarrow B C(F c), A \rightarrow A$ (reflexive), and $C \rightarrow D$ (transitive), thus $A \rightarrow$ $A B C D$. That is, $A B C$ will be expanded to ABCD (\sim reconstruct the original relation from this decomposition).
- Since $A+=A B C D$ (i.e., $A \rightarrow A B C D$), the decomposition satisfies lossless join property (no loose, no gain).

Practice 4: 3NF (4)

2. Discuss to show that the decomposed relations are in 3NF

Decomposed relations $A B C / / C D, F c=\{A \rightarrow B C, C \rightarrow D\}$

Dependency preserving

- Check if the given FDs $=\{A \rightarrow A B C, C \rightarrow D, A \rightarrow C, D \rightarrow D\}$ can be verified within a single decomposed relation.
- Given FDs:
- $A \rightarrow A B C$ can be verified within $A B C$
- $C \rightarrow D$ can be verified within CD
- A \rightarrow C can be verified within ABC
- $\mathrm{D} \rightarrow \mathrm{D}$ can be verified within CD
- Always true in any relation that contains D
- No transitive dependency.
- Thus, the decomposition satisfies dependency preserving property.

No 3NF violation

Ready for the next one ??

Practice 5: BCNF

Consider the following relation and functional dependencies
R(A, B, C, D)
FDs $=\{A \rightarrow A B C, C \rightarrow D, A \rightarrow C, D \rightarrow D\}$

1. Decompose the given relation $R(A, B, C, D)$ using BCNF
2. Discuss to show that the decomposed relations are in BCNF

Practice 5: BCNF (2)

2. Discuss to show that the decomposed relations are in BCNF

To verify, we need to show that the decomposed relations ABC // CD satisfy lossless join and For every non-trivial FD, $X \rightarrow$ Attribute(s), X is a superkey.

$$
\begin{array}{rlrl}
\text { F+ } & & & \\
& A & A B C D & \text { sk } \\
B & \rightarrow & B & \operatorname{tr} \\
C & \rightarrow & C D & \\
D & \rightarrow & D & \operatorname{tr}
\end{array}
$$

Lossless join -- check if (R1 intersect R2) != \{ \} and (R1 intersect R2) is a superkey of either R1 or R2 (or both)

- Let R1 $=A B C$ and $R 2=C D,(R 1$ intersect $R 2)=C$
- From $F+$, we can conclude that ($R 1$ intersect $R 2$) is a superkey for CD (R2)
- Thus, no violation

Practice 5: BCNF (3)

2. Discuss to show that the decomposed relations are in BCNF

Decomposed relations $A B C / / C D, F D s=\{A \rightarrow A B C, C \rightarrow D, A \rightarrow C, D \rightarrow D\}$

Lossless join -- check no loose, no gain

- First, identify the superkey of the given relation $R(A B C D)$.

F+

- Based on the given FDs, compute attribute closure.
- Any combination of attributes that contains A is a superkey. Thus, the only minimal superkey of $R(A B C D)$ is A.
- Then, start with a relation of the decomposition with a superkey A (ABC).
- Compute attribute closure of A.
- To help us envision, from the decomposed relation $A B C$,
- Apply $A \rightarrow \mathrm{ABC}$ (given FD) and $C \rightarrow$ (transitive), thus $A \rightarrow A B C D$. That is, $A B C$ will be expanded to $A B C D$ (\sim reconstruct the original relation from this decomposition).
- Since $A+=A B C D$ (i.e., $A \rightarrow A B C D$), the decomposition satisfies lossless join property (no loose, no gain).

Practice 5: BCNF (4)

2. Discuss to show that the decomposed relations are in BCNF

To verify, we need to show that the decomposed relations ABC // CD satisfy lossless join and For every non-trivial FD, $\mathrm{X} \rightarrow$ Attribute(s), X is a superkey.

Given $\mathrm{FDs}=\{A \rightarrow A B C, C \rightarrow D, A \rightarrow C, D \rightarrow D\}$

For every non-trivial $F D, X \rightarrow$ Attribute(s), \mathbf{X} is a superkey

- Consider $A B C$, we know that $A \rightarrow A B C$. (B and C have trivial FDs here, ignore)
- No non-key dependency in this decomposed relation.
- Consider CD, no non-key dependency.
- By default, a relation with 2 attributes is always in BCNF (even if there is no dependency at all).

No BCNF violation

Ready for the next one ??

Practice 6: BCNF

Given $R(A, B, C, D, E)$

$$
\text { FDs }=\{B \rightarrow D E, C \rightarrow A, A \rightarrow B C, D \rightarrow E\}
$$

Convert the relation into BCNF

Compute F+

(1) write all LHS \& remaining	(2) copy FDs as is	(3) apply reflexivity	(4) apply transitivity
$\mathrm{A} \rightarrow$	$\mathrm{A} \rightarrow \mathrm{BC}$	$\mathrm{A} \rightarrow \mathrm{ABC}$	$\mathrm{A} \rightarrow \mathrm{ABCDE}$
B \rightarrow	$\mathrm{B} \rightarrow \quad \mathrm{DE}$	$\mathrm{B} \rightarrow \mathrm{B} \mathrm{DE}$	$\mathrm{B} \rightarrow \mathrm{B} \mathrm{DE}$
C \rightarrow	$\mathrm{C} \rightarrow \mathrm{A}$	$\mathrm{C} \rightarrow \mathrm{AC}$	$\mathrm{C} \rightarrow \mathrm{ABCDE}$
D \rightarrow	$\mathrm{D} \rightarrow \quad \mathrm{E}$	$\mathrm{D} \rightarrow$ DE	$\mathrm{D} \rightarrow$ DE
$\mathrm{E} \rightarrow$	$\mathrm{E} \rightarrow$	$\mathrm{E} \rightarrow \quad \mathrm{E}$	$\mathrm{E} \rightarrow \quad \mathrm{E}$

$F+=\{A \rightarrow A B C D E, B \rightarrow B D E, C \rightarrow A B C D E, D \rightarrow D E, E \rightarrow E\}$

Practice 6: BCNF (2)

(from previous page)
(4) apply transitivity

Based on F+, let's rewrite using the following format to help us calculate

```
R(ABCDE)
    SK! SK!TR
```


Practice 6: BCNF (3)

$$
\text { F+ } \begin{array}{llrr}
\mathrm{A} & \rightarrow & \mathrm{ABCDE} \\
\mathrm{~B} & \rightarrow & \mathrm{~B} & \mathrm{DE} \\
\mathrm{C} & \rightarrow & \mathrm{ABCDE} \\
\mathrm{D} & \rightarrow & \mathrm{DE} \\
\mathrm{E} & \rightarrow & \mathrm{E}
\end{array}
$$

Consider non-trivial FDs and attributes that are not SK
Let's consider B:
B is not a super key, not trivial, thus $B \rightarrow$ BDE violates BCNF, thus we can break a relation on B

Let's consider D:
D is not a super key, not trivial, thus $D \rightarrow$ DE violates BCNF, thus we can break a relation on D

To choose which FD to work on, two ways:

- Choose the first FD, or
- Choose the longest FD (yield better solution)

Practice 6: BCNF (4)

```
R(ABCDE)
    SK! SK! TR
```

$B \rightarrow B D E$
RHS, make a table: BDE
LHS, make a table with B plus (original - (RHS)) - thus, ABC

Break on B ABCDE

Verify table ABC if there is any violation or if we can break any further.
A and C are super keys. already satisfy, don't break on them.

Can't break on B twice.

$$
\text { F+ } \begin{array}{lllr}
\mathrm{A} & \rightarrow & \mathrm{ABCDE} \\
\mathrm{~B} & \rightarrow & \mathrm{~B} & \mathrm{DE} \\
\mathrm{C} & \rightarrow & \mathrm{ABCDE} \\
\mathrm{D} & \rightarrow & \mathrm{DE} \\
\mathrm{E} & \rightarrow & \mathrm{E}
\end{array}
$$

Practice 6: BCNF (5)

$$
\text { F+ } \begin{array}{llr}
\mathrm{A} & \rightarrow & \mathrm{ABCDE} \\
\mathrm{~B} & \rightarrow & \mathrm{~B} \\
\mathrm{DE} \\
\mathrm{C} & \rightarrow & \mathrm{ABCDE} \\
\mathrm{D} & \rightarrow & \mathrm{DE} \\
\mathrm{E} & \rightarrow & \mathrm{E}
\end{array}
$$

RHS, make a table: DE
LHS, make a table with D plus (original - (RHS)) - thus, BD

Decomposed tables: R1(ABC), R2(BD), R3(DE)

Ready for the next one ??

Practice 7: BCNF

Given $R(A, B, C, D, E)$

$$
\text { FDs }=\{A \rightarrow C E, A \rightarrow B, B \rightarrow D, D \rightarrow C D, C \rightarrow E\}
$$

Convert the relation into BCNF

Compute F+

(1) write all LHS \& remaining	(2) copy FDs as is	(3) apply reflexivity	(4) apply transitivity
$\mathrm{A} \rightarrow$	$\mathrm{A} \rightarrow \mathrm{BCE}$	$\mathrm{A} \rightarrow \mathrm{ABCE}$	$\mathrm{A} \rightarrow \mathrm{ABCDE}$
B \rightarrow	$\mathrm{B} \rightarrow \mathrm{D}$	$\mathrm{B} \rightarrow \mathrm{BD}$	$\mathrm{B} \rightarrow \mathrm{BCDE}$
C \rightarrow	$\mathrm{C} \rightarrow \quad \mathrm{E}$	$\mathrm{C} \rightarrow \mathrm{CE}$	$\mathrm{C} \rightarrow \mathrm{CE}$
D \rightarrow	$\mathrm{D} \rightarrow$ CD	D \rightarrow CD	$\mathrm{D} \rightarrow \mathrm{CDE}$
$\mathrm{E} \rightarrow$	$\mathrm{E} \rightarrow$	$\mathrm{E} \rightarrow \quad \mathrm{E}$	$\mathrm{E} \rightarrow \quad \mathrm{E}$

$F+=\{A \rightarrow A B C D E, B \rightarrow B C D E, C \rightarrow C E, D \rightarrow C D E, E \rightarrow E\}$

Practice 7: BCNF (2)

(from previous page)
(4) apply transitivity

Based on F+, let's rewrite using the following format to help us calculate

```
R(ABCDE)
    SK! ! ! TR
```


Practice 7: BCNF (3)

$$
\begin{array}{rlrr}
\mathrm{F}+ & \rightarrow & \rightarrow & \mathrm{ABCDE} \\
\mathrm{~B} & \rightarrow & \mathrm{BCDE} \\
\mathrm{C} & \rightarrow & \mathrm{C} \mathrm{E} \\
\mathrm{D} & \rightarrow & \mathrm{CDE} \\
\mathrm{E} & \rightarrow & \mathrm{E}
\end{array}
$$

Consider non-trivial FDs and attributes that are not SK B is not a super key, not trivial, thus $B \rightarrow B C D E$ violates $B C N F$, thus we can break a relation on B
B is not a super key, not trivial, thus $C \rightarrow C E$ violates BCNF, thus we can break a relation on C
D is not a super key, not trivial, thus $D \rightarrow$ CDE violates BCNF, thus we can break a relation on D

To choose which FD to work on, two ways:

- Choose the first FD, or
- Choose the longest FD (yield better solution)

Practice 7: BCNF (4)

RHS, make a table: BCDE
LHS, make a table with B plus (original - (RHS)) - thus, AB

There are only
2 attrs, this relation is ok.

Break on D
$D \rightarrow$ CDE

RHS, make a table: CDE
LHS, make a table with D plus (original - (RHS)) - thus, BD

There are only 2 attrs, this relation is ok.

Break on C
$C \rightarrow C E$
RHS, make a table: CE
LHS, make a table with C plus (original - (RHS)) - thus, CD

There are only 2 attrs, this relation is ok.

Decomposed tables: R1(AB), R2(BD), R3(CE), R4(CD)

Ready for the next one ??

Practice 8: 3NF

Given $R(A, B, C, D, E)$

$$
\text { FDs }=\{A \rightarrow C E, A \rightarrow B, B \rightarrow D, D \rightarrow C D, C \rightarrow E\}
$$

Convert the relation into BCNF

Compute Fc

Compute Fc without using reflexivity

(1) write all LHS
\& remaining

A	\rightarrow	A	\rightarrow	BC E
B	\rightarrow	B	\rightarrow	D
C	\rightarrow	C	\rightarrow	E
D	\rightarrow	D	\rightarrow	CD

$\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{E}$, thus A does not have to directly imply E .
$A \rightarrow B, B \rightarrow D, D \rightarrow C$, thus A does not have to directly imply C.
Alternatively, if we apply $A \rightarrow C, C \rightarrow E$, thus A does not need to directly imply E. If this was done, C would be kept (i.e., $A \rightarrow B C$); then, $A \rightarrow B, B \rightarrow D, D \rightarrow C$, remove C
$F c=\{A \rightarrow B, B \rightarrow D, C \rightarrow E, D \rightarrow C\}$
Decomposed tables: R1(AB), R2(BD), R3(CE), R4(CD)

