
Spring 2024 – University of Virginia 1© Praphamontripong© Praphamontripong

SQL – Aggregates

CS 4750
Database Systems

[A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, Ch.3.7 and Ch. 5.5]
[C.M. Ricardo, S.D. Urban, Databases Illuminated, Ch. 5.4]



Spring 2024 – University of Virginia 2© Praphamontripong

Aggregation Functions
Calculate a value across an entire set or across groups of 
rows within the set

SQL uses five aggregation operators: 

• SUM – produces the sum of a column with numerical values

• AVG – produces the average of a column with numerical values

• MIN – applied to a column with numerical values, produces the 
smallest value 

• MAX – applied to a column with numerical values, produces the 
largest value

• COUNT – produces the number of (not necessarily distinct) 
values in a column



Spring 2024 – University of Virginia 3© Praphamontripong

Example: SUM
Given the loan schema 

loan(loan_number, branch_name, amount)

The sum of the amounts of all loans is expressed by 

loan_number branch_name amount
L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500

SUM(amount)
8700

Total
8700

SELECT SUM(amount)
FROM loan

SELECT SUM(amount) AS Total
FROM loan



Spring 2024 – University of Virginia 4© Praphamontripong

Example: AVG
Given the loan schema 

loan(loan_number, branch_name, amount)

The average of the amounts of all loans is expressed by 

loan_number branch_name amount
L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500

AVG(amount)
1242.857142857143

SELECT AVG(amount)
FROM loan



Spring 2024 – University of Virginia 5© Praphamontripong

Example: MIN
Given the loan schema 

loan(loan_number, branch_name, amount)

The smallest amount of loans is expressed by 

loan_number branch_name amount
L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500

min(amount)
500

SELECT MIN(amount)
FROM loan



Spring 2024 – University of Virginia 6© Praphamontripong

Example: MAX
Given the loan schema 

loan(loan_number, branch_name, amount)

The largest amount of loans is expressed by 

loan_number branch_name amount
L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500

max(amount)
2000

SELECT MAX(amount)
FROM loan



Spring 2024 – University of Virginia 7© Praphamontripong

Example: COUNT
Given the loan schema 

loan(loan_number, branch_name, amount)

Count the number of tuples in the loan table

loan_number branch_name amount
L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500

count(*)
7

Count(loan_number)
7

SELECT count(*)
FROM loan

SELECT count(loan_number)
FROM loan

Count 
rows Count values 

of a specified 
column



Spring 2024 – University of Virginia 8© Praphamontripong

Example: COUNT .. DISTINCT
Given the loan schema 

loan(loan_number, branch_name, amount)

Count the number of values in the branch_name column

loan_number branch_name amount
L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500

count(branch_name)
7

count(distinct branch_name)
5

SELECT count(branch_name)
FROM loan

SELECT count(DISTINCT branch_name)
FROM loan



Spring 2024 – University of Virginia 9© Praphamontripong

Aggregation: Order of Actions

1. The FROM clause generates the data set

2. The WHERE clause filters the data set generated by the FROM clause

3. The GROUP BY clause aggregates the data set that was filtered by 
the WHERE clause (note: GROUP BY does not sort the result set)

4. The HAVING clause filters the data set that was aggregated by the 
GROUP BY clause

5. The SELECT clause transforms the filtered aggregated data set

6. The ORDER BY clause sorts the transformed data set 

SELECT select_list
FROM table_source
[WHERE search_condition]
[GROUP BY group_by_expression]
[HAVING search_condition]
[ORDER BY order_expression [ASC | DESC] ]

Order matter



Spring 2024 – University of Virginia 10© Praphamontripong

Grouping Requirement
Several DBMS requires that the columns appear in the SELECT 
clause that are not used in an aggregation function must appear 
in the GROUP BY clause

SELECT column_A, column_B, some_aggregation_function
FROM table_source
GROUP BY column_A, column_B

SELECT column_A, column_B, some_aggregation_function
FROM table_source
GROUP BY column_B



Spring 2024 – University of Virginia 11© Praphamontripong

Example: SUM with GROUP BY
Given the loan schema 

loan(loan_number, branch_name, amount)

The sum of the amounts of all loans for each branch is 
expressed by 

loan_number branch_name amount
L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500

branch_name SUM(amount)
Downtown 2500

Mianus 500
Perryridge 2800
Redwood 2000
Round Hill 900

SELECT branch_name, SUM(amount)
FROM loan
GROUP BY branch_name;



Spring 2024 – University of Virginia 12© Praphamontripong

Grouping, Aggregation, and Null
• The value NULL is ignored in any aggregation

• Not contribute to a sum, average, or count of an attribute
• Cannot be the minimum or maximum in its column

• Null is treated as an ordinary value when forming groups

• Can have a group with NULL attribute(s)

• When performing any aggregation except count over an 
empty bag of values, the result is NULL

• The count of an empty bag is 0



Spring 2024 – University of Virginia 13© Praphamontripong

HAVING Clauses
• An aggregation in a HAVING clause applies only to the 

tuples of the group being tested – filter groups

• Any attributes of relations in the FROM clause may be 
aggregated in the HAVING clause

• But only those attributes that are in the GROUP BY list 
may appear unaggregated in the having clause

branch_name SUM(amount)
Downtown 2500
Perryridge 2800

The sum of the amounts of all loans for each branch that has 
more than one loan is expressed by 

SELECT branch_name, sum(amount) 
FROM loan
GROUP BY branch_name
HAVING COUNT(branch_name) > 1;



Spring 2024 – University of Virginia 14© Praphamontripong

Example 1
List the number of customers in each country. Only include 
countries with more than 10 customers

count(id) Country
11 France
11 Germany
13 USA

SELECT count(id), country
FROM Customer
GROUP BY country
HAVING COUNT(id) > 10;



Spring 2024 – University of Virginia 15© Praphamontripong

Example 2
List the number of customers in each country, except USA, 
sorted high to low. Only include countries with 9 or more 
customers

count(id) Country
11 France
11 Germany
9 Brazil

SELECT COUNT(id), country
FROM Customer
WHERE country <> “USA”
GROUP BY country
HAVING COUNT(id) >= 9
ORDER BY COUNT(id) DESC;



Spring 2024 – University of Virginia 16© Praphamontripong

Final Notes about Aggregation
#1: Keep the GROUP BY clause small and precise

• Several DBMSs require that all non-aggregated columns must 
be in the GROUP BY clause

• Excessive columns in GROUP BY can negatively impact the 
query’s performance; make the query hard to read, 
understand, rewrite

• For queries that need both aggregations and details, do all 
aggregations in subqueries first, then join those to the tables to 
retrieve the details



Spring 2024 – University of Virginia 17© Praphamontripong

Final Notes about Aggregation
#2: COUNT(*) and COUNT(<column_name>) are different

• COUNT(*) – count all rows, including ones with null values

• COUNT(<column_name>) – count only the rows where the 
column value is not NULL

• Sometimes, dividing a query into subqueies can be more 
efficient than using a GROUP BY (more about subqueries next week)



Spring 2024 – University of Virginia 18© Praphamontripong

Final Notes about Aggregation
#3: Use DISTINCT to get distinct counts

• COUNT(*) – returns the number of rows in a group, including 
NULL value and duplicates

• COUNT(<column_name>) – returns the number of rows where 
the column value is not NULL

• COUNT(DISTINCT <column_name>) – returns the number of 
rows with unique, non-null values of the column



Spring 2024 – University of Virginia 19© Praphamontripong

Wrap-Up
• Aggregation functions

• Order of actions matter when applying aggregation

• Aggregation helps make decisions and succinctly convey 
information

What’s next? 

• SQL – Joins

• Combine techniques (aggregates and joins) to solve 
complex questions


