
Spring 2024 – University of Virginia 1© Praphamontripong© Praphamontripong

SQL – Subqueries

CS 4750
Database Systems

[A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, Ch.5.3]

Spring 2024 – University of Virginia 2© Praphamontripong

Aggregation: Order of Actions

1. The FROM clause generates the data set

2. The WHERE clause filters the data set generated by the FROM clause

3. The GROUP BY clause aggregates the data set that was filtered by the
WHERE clause (note: GROUP BY does not sort the result set)

4. The HAVING clause filters the data set that was aggregated by the
GROUP BY clause

5. The SELECT clause transforms the filtered aggregated data set

6. The ORDER BY clause sorts the transformed data set

SELECT select_list
FROM table_source
[WHERE search_condition]
[GROUP BY group_by_expression]
[HAVING search_condition]
[ORDER BY order_expression [ASC | DESC]]

Order matters

revisit

Spring 2024 – University of Virginia 3© Praphamontripong

Joins
Join combines data across tables
• Nested-loop
• Natural join (most common)
• Inner join (filter Cartesian product)
• Outer joins (preserve non-matching tuples)
• Self join pattern

Different joining techniques can be used to achieve particular goals

left
table

right
table

LEFT JOIN

left
table

right
table

RIGHT JOIN

left
table

right
table

NATURAL JOIN

left
table

right
table

(INNER) JOIN

revisit

Spring 2024 – University of Virginia 4© Praphamontripong

Recap 1: JOIN
Find the total number of unique sailors who have reserved
each boat (ordered the number of sailors in descending order).
Display the count, boat name, and boat id

SELECT COUNT(DISTINCT sid), bname, bid
FROM Boats NATURAL JOIN Reserves
GROUP BY bname, bid
ORDER BY COUNT(DISTINCT sid) DESC

Boats (bid, bname, color)
Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)

Number of unique sailors
who have reserved this boat

Refer to http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql

http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql

Spring 2024 – University of Virginia 5© Praphamontripong

Recap 2: JOIN
Find the average age of sailors who have reserved each boat.
Show boat name, boat id, and the average age.
Order results by boat id.

SELECT bname, bid, AVG(age)
FROM Sailors NATURAL JOIN Reserves NATURAL JOIN Boats
GROUP BY bname, bid
ORDER BY bid

Boats (bid, bname, color)
Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)

Refer to http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql

http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql

Spring 2024 – University of Virginia 6© Praphamontripong

Recap 3: JOIN
Find the average age of sailors who have reserved each boat?
Show boat name, bid, and the average age. Order results by
bid. (from Recap 2)

In addition, only show the boat info where the average age of
sailors who have reserved that boat is > 35 years old.

SELECT bname, bid, AVG(age)
FROM Sailors NATURAL JOIN Reserves NATURAL JOIN Boats
GROUP BY bname, bid
HAVING AVG(age) > 35
ORDER BY bid

Boats (bid, bname, color)
Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)

Refer to http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql

http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql

Spring 2024 – University of Virginia 7© Praphamontripong

Recap 4: Self Join

practice_emp
empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

Find the average salary for each job that is greater than the
average salary of all employees

SELECT E1.job, AVG(E1.sal) AS AvgSal
FROM practice_emp E1, practice_emp E2
GROUP BY E1.job
HAVING AVG(E1.sal) > AVG(E2.sal)

Idea:
1. Self-join practice_emp
2. Use one copy to aggregate, find average

salary of all employees
3. Use one copy to keep the original job,

find average salary of each job
4. Compare average salary of each job and

average salary of all employees

(Note: The table shows sample data, not a complete set of data,
refer to https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql)

https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql

Spring 2024 – University of Virginia 8© Praphamontripong

Recap 5: Self Join
Find all students (sid) who live in the same city and on the same
street as their mentor

SELECT S1.sid
FROM Student S1, Student S2, Mentorship M
WHERE S1.sid = M.mentee_sid AND

S2.sid = M.mentor_sid AND
S1.street = S2.street AND
S1.city = S2.city

Mentorship (mentee_sid, mentor_sid)
-- mentor_sid is a mentor of another student mentee_sid

Study (sid, credits) -- credits the student has taken
Enrollment (dept_id, sid) -- dept the student is enrolled in
Student (sid, street, city) -- street, city the student lives

Idea:
1. Self-join Student
2. Use one copy for mentee
3. Use one copy for mentor
4. Check the pair of mentee and

mentor against Mentorship
5. Check that the street and city

match

Spring 2024 – University of Virginia 9© Praphamontripong

Subqueries: Core Idea

The smaller the problem, the simpler to solve, the easier to debug

Split your problem into sub-problems

Solve them separately

Compose them

Spring 2024 – University of Virginia 10© Praphamontripong

Subqueries
• Subquery = a query that is part of another query

• A subquery can have subqueries

Usage:

• Return a single constant that can be used to compute an
associated value in a SELECT clause

• Return a single constant that can be compared to another value
in a WHERE clause

• Return a relation that can be compared or evaluated in a WHERE
clause

• Return a relation that can be used as input for another query, in
a FORM clause

Spring 2024 – University of Virginia 11© Praphamontripong

Equivalent Query Example

SELECT job, AVG(sal)
FROM practice_emp
GROUP BY job

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

Find the average salary for each job

job AvgSal
Analyst 3500.0000
Clerk 1437.5000
Manager 3158.3333
President 6500.0000
Salesman 1800.0000

Idea (self join):
1. Self-join practice_emp
2. Use one copy to aggregate, group by job
3. Use one copy to keep the original job

SELECT E1.job, AVG(E2.sal) AS AvgSal
FROM practice_emp E1, practice_emp E2
WHERE E1.job = E2.job
GROUP BY E1.job

practice_emp

(Note: The table shows sample data, not a complete set of data,
refer to https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql)

https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql

Spring 2024 – University of Virginia 12© Praphamontripong

(Equivalent) Subquery (SELECT)

Idea:
1. Group by job
2. For each tuple, compute aggregate

job AvgSal
Analyst 3500.0000
Clerk 1437.5000
Manager 3158.3333
President 6500.0000
Salesman 1800.0000

SELECT E1.job,
(SELECT AVG(E2.sal)
FROM practice_emp AS E2
WHERE E1.job = E2.job) AS AvgSal

FROM practice_emp E1
GROUP BY E1.job

“Correlated” query
Recomputed for each tuple
(can’t be run independently

of the outer query)

Find the average salary for each job

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

A subquery in SELECT returns a single value – used to
compute an associated value

Spring 2024 – University of Virginia 13© Praphamontripong

(Equivalent) Subquery (FROM)

SELECT E1.job, AvgSal
FROM practice_emp E1,

(SELECT job, AVG(sal) AS AvgSal
FROM practice_emp
GROUP BY job) AS E2

WHERE E1.job = E2.job
GROUP BY E1.job

Idea:
1. Compute aggregate for each job
2. Join the original practice_emp

Find the average salary for each job

job AvgSal
Analyst 3500.0000
Clerk 1437.5000
Manager 3158.3333
President 6500.0000
Salesman 1800.0000

“Uncorrelated” query
Independent of outer query

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

A subquery in FROM returns a relation – used as input for
another query

Spring 2024 – University of Virginia 14© Praphamontripong

Subqueries in WHERE

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

SELECT E1.ename
FROM practice_emp E1
WHERE E1.sal =

(SELECT MAX(E2.sal)
FROM practice_emp AS E2
WHERE E1.job = E2.job)

Find employee name (or names) who earns the highest salary
for each job

[more subqueries in WHERE later]

“Correlated”

ename
Allen
Jones
Scott
King
Ford
Miller

practice_emp

A subquery in WHERE returns a single value – to be compared
to another value in a WHERE clause

Spring 2024 – University of Virginia 15© Praphamontripong

Subqueries in WITH

practice_emp
empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

WITH temp AS
(SELECT job, MAX(sal) AS maxSal
FROM practice_emp
GROUP BY job)

SELECT E1.ename
FROM practice_emp AS E1, temp AS T
WHERE E1.sal = T.maxSal AND

E1.job = T.job

Find employee name (or names) who earns the highest salary
for each job

[WITH -- not supported by MySQL 5.6, 5.7; work on MySQL 8.0 (GCP and CS server) and XAMPP MariaDB]

“Uncorrelated”

ename
Allen
Jones
Scott
King
Ford
Miller

A subquery in WITH clause returns a temporary relation that
can be used by an associated query

Spring 2024 – University of Virginia 16© Praphamontripong

Let’s Try 1: Self Join
For each person, find the average salary of their job (assume we
will display empno, ename, and average salary of the person’s job)

SELECT E1.empno, E1.ename, AVG(E2.sal)
FROM practice_emp E1, practice_emp E2
WHERE E1.job = E2.job
GROUP BY E1.empno, E1.ename

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

Idea:
1. Self-join practice_emp
2. Use one copy to get

each person info
3. Use one copy to

compute average salary
of the person’s job

(Note: The table shows sample data, not a complete set of data,
refer to https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql)

https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql

Spring 2024 – University of Virginia 17© Praphamontripong

Let’s Try 1: Subqueries in SELECT
For each person, find the average salary of their job (assume we
will display empno, ename, and average salary of the person’s job)

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp Step 1: Find each person’s empno and ename

Step 2: Given the job of the person, find the
average salary of that job

SELECT E1.empno, E1.ename, avg
FROM practice_emp E1

SELECT E1.empno, E1.ename,
(SELECT AVG(E2.sal)
FROM practice_emp E2
WHERE E1.job = E2.job)

FROM practice_emp E1

Nested and correlated

(Note: The table shows sample data, not a complete set of data,
refer to https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql)

https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql

Spring 2024 – University of Virginia 18© Praphamontripong

Let’s Try 1: Subqueries in FROM
For each person, find the average salary of their job (assume we
will display empno, ename, and average salary of the person’s job)

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp Step 1: Find average salary of each job

Step 2: For each person, find the average
salary of that the person’s job

SELECT job, AVG(sal) AS avg
FROM practice_emp
GROUP BY job

SELECT E1.empno, E1.ename, E2.avg
FROM practice_emp AS E1,

(SELECT job, AVG(sal) AS avg
FROM practice_emp
GROUP BY job) AS E2

WHERE E1.job = E2.job

(Note: The table shows sample data, not a complete set of data,
refer to https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql)

https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql

Spring 2024 – University of Virginia 19© Praphamontripong

Let’s Try 1: Subqueries in WITH
For each person, find the average salary of their job (assume we
will display empno, name, and average salary of the person’s job)

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

SELECT job, AVG(sal) AS avgSal
FROM practice_emp
GROUP BY job

WITH temp AS
(SELECT job, AVG(sal) AS avgSal
FROM practice_emp
GROUP BY job)

SELECT E1.empno, E1.ename, T.avgSal
FROM practice_emp AS E1, temp AS T
WHERE E1.job = T.job

Step 1: Find average salary of each job

Step 2: For each person, find the average
salary of that the person’s job

(Note: The table shows sample data, not a complete set of data,
refer to https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql)

https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql

Spring 2024 – University of Virginia 20© Praphamontripong

Let’s Try 2: Join (1)
For each sailor, find the number of boats they have reserved
(assume we will display sname and the number of boats)

SELECT sname, COUNT(bid)
FROM Sailors NATURAL JOIN Reserves
GROUP BY sname

Sailors Reserves

0-count case not
covered

(Note: The table shows sample data, not a complete set of data,
refer to http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql)

http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql

Spring 2024 – University of Virginia 21© Praphamontripong

Let’s Try 2: Join (2)
For each sailor, find the number of boats they have reserved
(assume we will display sname and the number of boats)

SELECT sname, COUNT(bid)
FROM Sailors

NATURAL LEFT OUTER JOIN Reserves
GROUP BY sname

Sailors Reserves

Count(NULL)
results in 0

(Note: The table shows sample data, not a complete set of data,
refer to http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql)

http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql

Spring 2024 – University of Virginia 22© Praphamontripong

Let’s Try 2: Subqueries in SELECT
For each sailor, find the number of boats they have reserved
(assume we will display sname and the number of boats)

SELECT sname,
(SELECT COUNT(bid)
FROM Reserves
WHERE Sailors.sid = Reserves.sid)

FROM Sailors

Sailors Reserves

Nested and
correlated

Count(empty result)
results in 0

(Note: The table shows sample data, not a complete set of data,
refer to http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql)

http://www.cs.virginia.edu/~up3f/cs4750/inclass/alldbs.sql

Spring 2024 – University of Virginia 23© Praphamontripong

Subqueries and Set Operations
UNION

INTERSECT

EXCEPT

(sub-result1)

(sub-result2)

UNION

(sub-result1)

(sub-result2)

INTERSECT

(sub-result1)

(sub-result2)

EXCEPT

Requirements:

• Same number of
columns

• Same order of
columns

• Same column
data types

We talked about UNION and INTERSECT. Let’s consider EXCEPT

[not supported by MySQL
5.6, 5.7; work on MySQL
8.0 (GCP and CS server)
and local XAMPP 10.4.11-

MariaDB]

[not supported by MySQL
5.6, 5.7; work on MySQL
8.0 (GCP and CS server)
and local XAMPP 10.4.11-

MariaDB]

Spring 2024 – University of Virginia 24© Praphamontripong

Example: Let’s Solve A Problem
Use the following schema. Find IDs and names of all customers
who have purchased products sold by company 7777 only. Do
not list customers who have purchased from any other
companies.

Product(pid, name, cid)
-- cid is foreign key to Company.cid

Company(cid, cname, city)
Customer(custId, name, city)
Purchase(purchase_date, pid, custId, quantity, price)

-- pid is foreign key to Product.pid,
-- custId is foreign key to Customer.custId

Assume each customer may purchase the same product multiple times

How should we solve this problem?

Refer to https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql
(rename the tables to make it easy to demo)

https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql

Spring 2024 – University of Virginia 25© Praphamontripong

Set difference (–)

(sub-result1)

(sub-result2)

EXCEPT How should we solve this problem?

(Find all customers who have purchased)

(Find all customers who have purchased
from other companies, not 7777)

EXCEPT

2

1

Example: Let’s Solve A Problem

Spring 2024 – University of Virginia 26© Praphamontripong

(Find all customers who have purchased)

(Find all customers who have purchased
from other companies, not 7777)

EXCEPT

– =

Use EXCEPT to Solve the Problem

(sub-result1) (sub-result2)
(difference)

2

1

Spring 2024 – University of Virginia 27© Praphamontripong

Find which companies the customers have purchased.
Then, find the names of the customers

(Find all customers who have purchased)

SELECT T1.custId, T2.cid
FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid

Use EXCEPT to Solve the Problem (2)

Got all customers who
have purchased.

Still need to find the
names of the customers

1

Spring 2024 – University of Virginia 28© Praphamontripong

Find which companies the customers have purchased
Then, find the names of the customers

(Find all customers who have purchased)

SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T

NATURAL JOIN Customer T3

Use EXCEPT to Solve the Problem (3)
1

Spring 2024 – University of Virginia 29© Praphamontripong

Find all customers who have purchased from other companies
Then, find the names of the customers

SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2
WHERE T2.cid <> 7777
GROUP BY T1.custId

(Find all customers who have purchased
from other companies, not 7777)

Use EXCEPT to Solve the Problem (4)
2

Got all customers who have purchased from
other companies, not 7777. Still need to

find the names of the customers

Spring 2024 – University of Virginia 30© Praphamontripong

SELECT T3.custId, T3.name

FROM (SELECT T1.custId
FROM Purchase T1 NATURAL JOIN Product T2
WHERE T2.cid <> 7777

GROUP BY T1.custId) T
NATURAL JOIN Customer T3

Use EXCEPT to Solve the Problem (5)

Find all customers who have purchased from other companies
Then, find the names of the customers

(Find all customers who have purchased
from other companies, not 7777)

2

Spring 2024 – University of Virginia 31© Praphamontripong

EXCEPT

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2
WHERE T2.cid <> 7777

GROUP BY T1.custId) T
NATURAL JOIN Customer T3)

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T

NATURAL JOIN Customer T3)

–

=

Use EXCEPT to Solve the Problem (6)

2

1

Refer to
https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql

https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql

Spring 2024 – University of Virginia 32© Praphamontripong

LEFT OUTER JOIN

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2
WHERE T2.cid <> 7777
GROUP BY T1.custId) T

NATURAL JOIN Customer T3) result2

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T

NATURAL JOIN Customer T3) result1

–

=

Workaround for EXCEPT

2

1

ON result1.custId = result2.custId
WHERE result2.custId IS NULL

SELECT result1.custId, result1.name
FROM

Refer to
https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql

https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql

Spring 2024 – University of Virginia 33© Praphamontripong

Example: UNION

UNION

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2
WHERE T2.cid <> 7777

GROUP BY T1.custId) T
NATURAL JOIN Customer T3)

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T

NATURAL JOIN Customer T3)

U

=

Refer to
https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql

https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql

Spring 2024 – University of Virginia 34© Praphamontripong

Example: INTERSECT

INTERSECT

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2
WHERE T2.cid <> 7777

GROUP BY T1.custId) T
NATURAL JOIN Customer T3)

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T

NATURAL JOIN Customer T3)

∩

=

Refer to
https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql

https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql

Spring 2024 – University of Virginia 35© Praphamontripong

Workaround for INTERSECT

∩

=

JOIN -- inner join

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2
WHERE T2.cid <> 7777
GROUP BY T1.custId) T

NATURAL JOIN Customer T3) result2

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T

NATURAL JOIN Customer T3) result1

2

1

ON result1.custId = result2.custId

SELECT DISTINCT result1.custId, result1.name
FROM

Refer to
https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql

https://www.cs.virginia.edu/~up3f/cs4750/inclass/product-purchase-for-subquery.sql

Spring 2024 – University of Virginia 36© Praphamontripong

Wrap-Up
• Subqueries in SELECT, FROM
• Abstract immediate result using WITH
• Equivalent queries
• Intro to subqueries in WHERE
• Subqueries and set operations

Note:
• Avoid nested queries – if aiming for speed
• Be careful of semantics of nested queries

• Correlated vs. Uncorrelated

What’s next?
• Subqueries in WHERE
• Existential and universal quantifiers
• Triggers and constraints

Spring 2024 – University of Virginia 37© Praphamontripong

More Practice / Example

Spring 2024 – University of Virginia 38© Praphamontripong

Previous Solution

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

SELECT E1.ename
FROM practice_emp E1
WHERE E1.sal =

(SELECT MAX(E2.sal)
FROM practice_emp AS E2
WHERE E1.job = E2.job)

Find employee name (or names) who earns the highest salary
for each job

[more subqueries in WHERE later]

“Correlated”

ename
Allen
Jones
Scott
King
Ford
Miller

practice_emp

A subquery in WHERE returns a single value – to be compared
to another value in a WHERE clause

revisit, slide 14

Spring 2024 – University of Virginia 39© Praphamontripong

Alternative Ways to Solve

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

Find the employee name (or employees) with the highest
salary for each job title

How should we write SQL?

(Note: The table shows sample data, not a complete set of data,
refer to https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql)

https://www.cs.virginia.edu/~up3f/cs4750/assigns/employees.sql

Spring 2024 – University of Virginia 40© Praphamontripong

Option 1: Self-Join

ename job sal
Ford Analyst 3500
Scott Analyst 3500
Miller Clerk 1700
Jones Manager 3375
King President 6500
Allen Salesman 2000

SELECT E1.ename, E2.job, MAX(E2.sal)
FROM practice_emp AS E1,

practice_emp AS E2
WHERE E1.job = E2.job
GROUP BY E2.job, E1.sal, E1.ename
HAVING E1.sal = MAX(E2.sal);

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

Find the employee name (or employees) with the highest
salary for each job title

practice_emp

Spring 2024 – University of Virginia 41© Praphamontripong

Option 2: Subqueries

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

Find the employee name (or employees) with the highest
salary for each job title

Find max salary for each job

Then find the employee(s) with
that max salary

Spring 2024 – University of Virginia 42© Praphamontripong

Find max salary for each job

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

job maxSal
Analyst 3500
Clerk 1700
Manager 3375
President 6500
Salesman 2000

SELECT E1.job, MAX(E1.sal) AS maxSal
FROM practice_emp E1
GROUP BY E1.job;

Option 2: Subqueries

Spring 2024 – University of Virginia 43© Praphamontripong

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

job maxSal
Analyst 3500
Clerk 1700
Manager 3375
President 6500
Salesman 2000

JOIN
(on matching
attributes)

ename job sal
Ford Analyst 3500
Scott Analyst 3500
Miller Clerk 1700
Jones Manager 3375
King President 6500
Allen Salesman 2000

How should we write SQL for this?

SELECT E1.job, MAX(E1.sal) AS maxSal
FROM practice_emp E1
GROUP BY E1.job;

Option 2: Subqueries

Spring 2024 – University of Virginia 44© Praphamontripong

SELECT E2.job, MAX(E2.sal) AS maxSal
FROM practice_emp E2
GROUP BY E2.job;

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

job maxSal
Analyst 3500
Clerk 1700
Manager 3375
President 6500
Salesman 2000

SELECT *
FROM ,
WHERE .job = .job;

21
21

SELECT *
FROM practice_emp

JOIN
(on matching
attributes)

2

1

Option 2: Subqueries

Spring 2024 – University of Virginia 45© Praphamontripong

SELECT *
FROM ,
WHERE .job = .job;

21
21

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

job maxSal
Analyst 3500
Clerk 1700
Manager 3375
President 6500
Salesman 2000

JOIN
(on matching
attributes)

2

1

Option 2: Subqueries

SELECT *
FROM practice_emp E1,

(SELECT E2.job, MAX(E2.sal) AS maxSal
FROM practice_emp E2
GROUP BY E2.job) T1

WHERE E1.job = T1.job

Spring 2024 – University of Virginia 46© Praphamontripong

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

job maxSal
Analyst 3500
Clerk 1700
Manager 3375
President 6500
Salesman 2000

JOIN
(on matching
attributes)

SELECT E1.ename, E1.job, E1.sal, T1.maxSal
FROM practice_emp E1,

(SELECT E2.job, MAX(E2.sal) AS maxSal
FROM practice_emp E2
GROUP BY E2.job) T1

WHERE E1.job = T1.job

2

1

3

Option 2: Subqueries

Spring 2024 – University of Virginia 47© Praphamontripong

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

job maxSal
Analyst 3500
Clerk 1700
Manager 3375
President 6500
Salesman 2000

JOIN
(on matching
attributes)

2

1
SELECT E2.ename, E2.job, E2.sal, T1.maxSal
FROM practice_emp E2,

(SELECT E1.job, MAX(E1.sal) AS maxSal
FROM practice_emp E1
GROUP BY E1.job) T1

WHERE E2.job = T1.job 3

SELECT T2.ename, T2.job, T2.sal
FROM T2
WHERE T2.sal = T1.maxSal

3

Option 2: Subqueries

Spring 2024 – University of Virginia 48© Praphamontripong

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

job maxSal
Analyst 3500
Clerk 1700
Manager 3375
President 6500
Salesman 2000

JOIN
(on matching
attributes)

2

1

SELECT T2.ename, T2.job, T2.sal

FROM

WHERE T2.sal = T2.maxSal

(SELECT E2.ename, E2.job,
E2.sal, T1.maxSal

FROM practice_emp E2,
(SELECT E1.job, MAX(E1.sal) AS maxSal
FROM practice_emp E1
GROUP BY E1.job) T1

WHERE E2.job = T1.job) T2

Option 2: Subqueries

Spring 2024 – University of Virginia 49© Praphamontripong

Option 3: WITH Clause

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

Find the employee name (or employees) with the highest
salary for each job title

Find max salary for each job

Then find the employee(s) with
that max salary

Spring 2024 – University of Virginia 50© Praphamontripong

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

job maxSal
Analyst 3500
Clerk 1700
Manager 3375
President 6500
Salesman 2000

JOIN
(on matching
attributes)

2

1

WITH MaxSal AS
(SELECT job, MAX(sal) AS salary
FROM practice_emp
GROUP BY job)

SELECT E1.ename, E1.job, E1.sal
FROM practice_emp AS E1, MaxSal AS A
WHERE E1.job = A.job

AND E1.sal = A.salary

Option 3: WITH Clause
Abstract immediate result

using WITH clause

