
Spring 2024 – University of Virginia 1© Praphamontripong© Praphamontripong

Indexing

CS 4750
Database Systems

[Silberschatz, Korth, Sudarshan, “Database System Concepts,” Ch.14]
[H. Garcia-Molina, J.D. Ullman, J. Widom, Database Systems: The Complete Book, Ch.14]

Spring 2024 – University of Virginia 2© Praphamontripong

Indexing in a Book
Find information about “Google Cloud SQL” from

• Look for the keywords in
the index

• Find the pages where
the words occur

• Read the pages to find
the information Sorted order

Some book

Spring 2024 – University of Virginia 3© Praphamontripong

Indexing in Database
Example: Find 2nd year students who have taken < 45 credits

SELECT *
FROM students
WHERE year=2 AND credits < 45;

There might be 10,000
tuples in students relation.

Get all 10,000 tuples and test the condition
of the WHERE clause on each tuple?

Is there a way to get only the tuples from 2nd year students
and then test each of them to see if the credits match?

• Find which disk block the corresponding record resides
• Fetch the disk block
• Get the appropriate student records

Spring 2024 – University of Virginia 4© Praphamontripong

Indexing in Database
• Indexing = data structure technique to optimize the performance

of a database by minimizing the number of disk accesses required
when query is processed

• Basic algorithm to search – linear. However, complex search
queries (especially with joins) impacts performance

• Indexing helps improve performance

The key for the index can be any attribute or set of attributes and
need not be the key for the relation on which the index is built.

Common structure used by
a typical DBMS is B+ tree

Rule of thumb: Create an index on the attribute that is used
frequently in the search

Spring 2024 – University of Virginia 5© Praphamontripong

Indexing in Database
• An index takes a value for some field(s) and finds records with the

matching value quickly

value index
Blocks
holding
records

Matching
records

Search key Data reference
May be primary key or candidate

key of the table (sorted order)
Hold the address of the disk block
where the key value can be found

General index record (structure)

File containing a list of indices

“Search key” (or “key”) = Field(s)
on whose values the index is based

Spring 2024 – University of Virginia 6© Praphamontripong

Selection of Indexes
• An index on an attribute may speed up the execution of those

queries in which a value, or range of values, is specified for that
attribute, and may speed up joins involving that attribute.

• On the other hand, every index built for one or more attributes of
some relation makes insertions, deletions, and updates to that
relation more complex and time-consuming.

Database designers must analyze the trade-off

Spring 2024 – University of Virginia 7© Praphamontripong

Which Indexing Technique to Use
Aspects that must be considered:

• Access types
• Finding records with a specified attribute value (search key), or
• Finding records with attribute value based on a specified range

• Access time
• Time needed to find a particular data item or set of data items

• Insertion time
• Time to find the place to insert + time to insert a new data item

+ time to update the index structure

• Deletion time
• Time to find the data item to be deleted + time to delete the

data + time to update the index structure

• Space overhead
• Space occupied by an index structure (vs. performance)

Spring 2024 – University of Virginia 8© Praphamontripong

Types of File Organization Mechanism
Sequential file organization (or Ordered index)
• Indices based on sorted ordering of the values

• Generally fast

• Basic / traditional structure that most DBs use

Hash file organization (or Hash index)
• Indices based on a uniform distribution of values across a

range of buckets

• Hash function determines a value assigned to a bucket

Spring 2024 – University of Virginia 9© Praphamontripong

Example: Sequential File

[Ref: Figure 11.1, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 477]

Instructor records

• The records are stored
in sorted order of
instructor’s ID (used as
a search key)

• Search key defines the
sequential order of the
file

Instructor

Spring 2024 – University of Virginia 10© Praphamontripong

Example: Hash File

[Ref: based in part on Figure 24.6, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 7th Ed., page 1191]

Search
key

Hash
function [0,1,2,..,B-1]

Bucket index,
B = size of the bucket

(key, pointer)
(key, pointer)
(key, pointer)

Bucket array

0
1
2
3

B-1

Spring 2024 – University of Virginia 11© Praphamontripong

Ordered Index Structures
A file may have several indices, on different search keys

• Primary index (or clustered index)
• Search key defines the sequential order of the file
• Search key of a clustering index is often the primary key (but

not necessarily so)

• Secondary index (or unclustered index)
• Search key specifies an order different from the sequential

order of the file
• Use an extra-level of indirection to implement a secondary

index, containing pointers to all the records

Spring 2024 – University of Virginia 12© Praphamontripong

Example: Primary Index
Search key defines the sequential order of the file

Instructor

Fast but can result in unnecessary
indices and big space needed

[Ref: Figure 11.2, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 478]

Spring 2024 – University of Virginia 13© Praphamontripong

Instructor

Comp. Sci.

Finance

Music

Physics

Example: Secondary Index
Search key specifies an order different from the sequential order of
the file

Need an
extra-level to
implement

Improve performance of queries on
non-primary keys but impose overhead

[based in part on Figure 11.6, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 484]

Spring 2024 – University of Virginia 14© Praphamontripong

Ordered Index
• Created on the basis of the key of the table
• Ordered file with fixed, two fields

• Unique to each record (i.e., 1:1 mapping)

• Since primary keys are stored in sorted order, the
performance of the search operation is quite efficient

• Two types:
• Dense index
• Sparse index

Search key Data reference
May be primary key or

candidate key of the table
(sorted order)

Hold the address of the disk block
where the key value can be found

Spring 2024 – University of Virginia 15© Praphamontripong

Dense Index
• A record is created for every search key value
• Need more space to store index records
• Example: a search key is a primary key

Instructor file is sorted by
instructor’s ID

(every search key valued) Point to the real record on the disk

Instructor

[Ref: Figure 11.2, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 478]

A primary index
that is dense on a

primary-key,
ordered table is

redundant
(requiring

unnecessary
spaces)

Find instructor
with ID “58583”

Spring 2024 – University of Virginia 16© Praphamontripong

Dense Index
• Support range queries
• Example: a search key is not a primary key

Instructor file is sorted
on the search key

dept-name

Follow the pointer directly to the first record,
then follow the pointer in that record to locate the next
record in search key order until the desired record is found

Instructor

Pointer points to the first data record with the search-value.
The rest of the records are sorted on the same search key

[Ref: Figure 11.4, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 480]

Find a history instructor
with ID “58583”

Spring 2024 – University of Virginia 17© Praphamontripong

Dense Index: Lookup
• Given a search key K, the index is scanned

• When K is found, the associated pointer to the data file recorded is
followed and the block containing the record is read in main memory

• When dense indexes are used for non-primary key, the
minimum value is located first

• Consecutive blocks are loaded in main memory until a search key
greater than the maximum value is found

• The index is usually kept in main memory. Thus one disk I/O
has to be performed during lookup

• Since the index is sorted, a binary search can be used.
• If there are n search keys, at most log2n steps are required to locate

a given search key

• Query-answering using dense indices is efficient

Spring 2024 – University of Virginia 18© Praphamontripong

Sparse Index

[Ref: Figure 11.3, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 479]

• Used when dense indices are too large
• One key-pointer pair per data block
• Can be used only if the relation is stored in sorted order of the

search key

Start with search-key value
less than or equal to the

desired search value,
then linear search

Instructor

Find instructor
with ID “22222”

Spring 2024 – University of Virginia 19© Praphamontripong

Sparse Index: Lookup
• Given a search key K,

• Search the sparse index for the greatest key ≤ K, using binary
search

• Retrieve the pointed block to main memory to look for the record
with search key K (linear search vs. binary search)

• The index is usually kept in main memory. Thus one disk I/O
has to be performed during lookup

• Efficient in space but may require more computation time due
two binary searches

• Search on the sparse index
• Search on the retrieved data block

Spring 2024 – University of Virginia 20© Praphamontripong

Try to keep index size small

Dense Index vs. Sparse Index
• A primary index that is dense on an ordered table is redundant
• Thus, a primary index on an ordered table is always sparse

• Dense indices are faster in general

• Sparse indices require less space and impose less maintenance
for insertions and deletions

• Try to have a sparse index
with one entry per block

[Ref: Figure 18.1, Elmasri Navathe, “Fundamentals of Database Systems,” 6th Ed., page 634]

Spring 2024 – University of Virginia 21© Praphamontripong

More Info on Indexing
• When a primary key is created for a table, a table is ordered

based on the primary key

• At least one sparse index is created on that record to reduce
search time

• If a column (or some columns) is declared as unique, a
secondary index is created

• Every index introduces more data and more overhead (especially
when doing insert, delete, or update)

Can we create (or add) indices to just any table (or DB)? – No!

Read-heavy DBs – can index a lot (if space allows)
Write-heavy DBs – index sparingly (take a balanced approach)
Write-ONLY DBs – one or no index

Spring 2024 – University of Virginia 22© Praphamontripong

Multi-Level Indices
• If an index is small enough to be kept entirely in main memory,

the search time to find an entry is low

• If index is too large to be kept in main memory, index blocks
must be fetched from disk when required. One search results in
several disk-block reads

• If no overflow blocks in the index à use binary search
• If overflow blocks à use sequential search

• Solution:
• Use a sparse index on the index

Spring 2024 – University of Virginia 23© Praphamontripong

Levels

Example: Two-Level Sparse Index
• Use binary search on outer index

• Scan index block until the
correct record is found

• Scan block pointed to for desired
record

• For very large files, add
additional level of indexing to
improve search performance

• Must update indices at all levels
when perform insertion or
deletion

[Ref: Figure 11.5, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 481]

Sorted

Spring 2024 – University of Virginia 24© Praphamontripong

Updating Indices
All associated indices must be updated when a record is inserted
into or deleted from a file

Insertion:

• Find a place to insert

• For dense index:
• Insert search key value if not

present

• For sparse index:
• No change unless a new block

is created

• If the first search key value
appears in the new block,
insert the search key value
into the index

Deletion:

• Find the record

• If it is the last record, delete
that search key value from
index

• For dense index:
• Delete the search key value

• For sparse index:
• Delete the search key value

• Replace the key value’s entry
index with the next search key
value if not already present

Spring 2024 – University of Virginia 25© Praphamontripong

How to Implement: Use B+ Trees
• As the database grows (and the index file grows), performance

degrades. Reorganization is costly

• Solution: use B+ tree to maintain indices

B+ Tree
• A tree-like file structure

• Links nodes with pointers
• Has exactly one root, bounded by leaves
• Has unique path from root to each leaf; all paths are equal length
• Store keys only at leaves, references in other/internal nodes
• Guides key search via the reference values, from root to leaves

• Balance – same length on every path from root to leaves

• Extensible – number of pointers (n) at any given node

Balance sorted tree, allowing fast
search and maintenance without

overflow pages

Spring 2024 – University of Virginia 26© Praphamontripong

[Ref: Figure 14.9, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 7th Ed., page 636]

Example: B+ Tree

Spring 2024 – University of Virginia 27© Praphamontripong

B+ Tree: Node
• Nodes: root, internal node, or leaf node

• Each node is exactly one disk page (“page” and “node” are used
interchangeably)

• Contain n pointers and (n-1) key values

25 50 75
root

leaves

DB

<25 25≤key<50
50≤key<75

75≤key< …

100% data direct (1:1) mapping to actual data

n = 5
(n-1) = 4 key values

5 10 15 20 25 30 50 55 60 70 75 80 85 90

Spring 2024 – University of Virginia 28© Praphamontripong

B+ Tree: Leaf Node
• Each entry consists of a key value and a pointer to the storage

location of data matching the key

• Leaf nodes are organized into a linked list pages, chaining the
leaf nodes

• For a B+ tree with n pointers

• A leaf node holds
𝒏"𝟏
𝟐

≤ key values ≤ (n-1)

• Example:

• If n=4, each leaf contains at least
%"&
'

= 2 key values and at
most (4-1) = 3 key values

k0 k1 k2 k3 k4 …

[Ref: Silberschatz, Korth, Sudarshan, “Database System Concepts,” 7th Ed., page 635, constraints on leaf nodes]

Spring 2024 – University of Virginia 29© Praphamontripong

B+ Tree: Internal Node
• Nonleaf nodes: a multilevel (sparse) index

• Each entry consists of a reference value (key) and a pointer to
the leaf nodes

• For a B+ tree with n pointers

• An internal node holds
𝒏
𝟐
≤ pointers ≤ n

(thus, hold up to (n-1) key values)

• Example:

• If n=4, each internal node contains at least
!
"

= 2 pointers and at
most = 4 pointers

k0 k1 k2 k3
page pointer

[Ref: Silberschatz, Korth, Sudarshan, “Database System Concepts,” 7th Ed., page 635, constraints on nonleaf nodes]

Spring 2024 – University of Virginia 30© Praphamontripong

B+ Tree: Root Node
• A root node consists of one or more reference values (keys) and

pointers to the leaf nodes (or internal nodes)

• For a B+ tree with n pointers

• A root node holds 1 ≤ key values ≤ (n-1)

• Must have at least two pointers if the root points to internal nodes

• Must have at least one entry if the root is the only node in the tree

• Example:

• If n=4, a root node can hold fewer than
𝟒
𝟐

= 2 pointers

• It must hold at least 2 pointers (unless the tree consists of only one
node)

[Ref: Silberschatz, Korth, Sudarshan, “Database System Concepts,” 7th Ed., page 636, constraints on root nodes]

Spring 2024 – University of Virginia 31© Praphamontripong

B+ Tree: # Indices
• For a n-order B+ tree with a height of h

• The maximum number of records indexed is 𝐫𝐦𝐚𝐱 = 𝐧𝐡 − 𝐧(𝐡"𝟏)

• The minimum number of records indexed is 𝐫𝐦𝐢𝐧 = 𝟐 𝒏
𝟐

(𝐡"𝟏)

Spring 2024 – University of Virginia 32© Praphamontripong

Searching
Use the B+ tree property: sorted

Result:
• If the search key is found, return the position where the pointer locates.
• Otherwise, the search key is not found.

Leaf node pointer = address of a disk block

k1 k2 ... kn

root

search key < k1

k1 ≤ search key < k2

subtree subtree subtree

search key≥ kn

subtree

kn-1 ≤ search key < kn

Spring 2024 – University of Virginia 33© Praphamontripong

Insertion
Locate (leaf node) where to insert

Leaf node
is full ?

Place the key

no yes

Parent is
root ?

no
(internal node)

• Push the middle value
of the parent up
(~create new root)

• Split the parent
• Copy the key to the

split node
• Reorganize pointers of

the tree (all levels)

Parent is
full?

• Split the parent
• Copy the key to

the parent
• Reorganize the

parent’s
pointer(s)

• Update the upper
level(s) as
needed

no yes

• Copy the key
to the parent

• Reorganize
the parent’s
pointer(s)

yes

• Copy the key
to the parent

• Reorganize
the parent’s
pointer(s)

Split the leaf, place the key

Parent is
full?yes no

Spring 2024 – University of Virginia 34© Praphamontripong

Deletion
Locate (leaf node) where to delete

key
found?

Do nothing

Violate B+
tree ?

no yes

No update or
reorganization

no yes (fix the tree to satisfy the B+ tree
properties)

Right/Left
sibling has

> half ?

• Remove the key & its pointer from the leaf node
• Update the node as needed (e.g., shift keys)

• Merge the node with right/left sibling
• Update keys (of the combined node)
• Verify the B+ tree properties
• Update the parent(s) & redistribute the pointers
• Combines nodes of the upper level as needed
• Collapse the level(s) as needed

no (transferring will
result in underflow)

• (Use the linked-list
properties), transfer first/last
key of the right/left sibling
into the node

• Update the parent(s) &
redistribute the pointers

yes

Spring 2024 – University of Virginia 35© Praphamontripong

Low n vs. High n
• Small value for n -- Tall and thin B+ tree

• Advantage: Good consistent performance
• Equal depth of tree à constant lookup time

• Disadvantage: High overhead when insert/delete
• Need to reorganize up and down the tree

• Large value for n -- Short and wide B+ tree

• Advantage: Low overhead

• Disadvantage: Performance varies

Read/Write-mix DB à less overhead à high n

Read-heavy DB à consistent time à low n

Spring 2024 – University of Virginia 36© Praphamontripong

Advantages and Disadvantages
Index-sequential files:

Disadvantage:
• Performance degrades as sequential file grows because many

overflow blocks are created

• Periodic reorganization of entire file is required

B+ Tree index file:
Advantage:

• Automatically recognize itself with small, local changes (when
insert or delete data)

• Range queries on indexed attributes are fast

Disadvantage:
• Extra insertion deletion overhead, space overhead

B+ Tree indices are alternatives to
index sequential files

B+ Trees are used extensively in all DBMS

Spring 2024 – University of Virginia 37© Praphamontripong

Clustered vs. Unclustered Index
revisit

Unclustered Index

Clustered Index Records close in index
are close in data

Spring 2024 – University of Virginia 38© Praphamontripong

Cost of Disk I/O Operations

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 …

Assume a disk block holds 4 tuples of a relation. To find tuples associated
with key values 40 – 85

Without an index, need sequential scanning

Estimated cost = # blocks scanned

Sequential data file

Spring 2024 – University of Virginia 39© Praphamontripong

Cost of Disk I/O Operations

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 …

Assume a disk block holds 4 tuples of a relation. To find tuples associated
with key values 40 – 85

Use clustered index, index and data are sorted the same way

Estimated cost = selectivity estimate x #blocks

60 65 80 112 120 135 138 140 14810 15 18 20 30 40

120 14020 60

80

Sequential data file

Index file

Spring 2024 – University of Virginia 40© Praphamontripong

Cost of Disk I/O Operations

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 …

Assume a disk block holds 4 tuples of a relation. To find tuples associated
with key values 40 – 85

Use unclustered index, index and data are sorted differently

Estimated cost = selectivity estimate x #tuples

60 65 80 112 120 135 138 140 14810 15 18 20 30 40

120 14020 60

80

Worse case: read a
different block every
time. Thus, choose

key(s) carefully

Sequential data file

Index file

Spring 2024 – University of Virginia 41© Praphamontripong

Another Scenario

No index (full sequential scan) Unclustered index

Supposed we know the following
#blocks = 100
#tuples = 10000

X = Selectivity estimate (~proportion of tuples matching the
selection) of a given query = 0.1

Cost = #blocks
= 100

Cost = X * #tuples
= 0.1 * 10000
= 1000

Full sequential scan is a better option when
• Selectivity is high (many tuples match the selection), or
• Ratio between #tuples:#blocks is high

Using an unclustered index
in the wrong scenario can
lead to low performance

Spring 2024 – University of Virginia 42© Praphamontripong

Thinking About Indexing Choices
Assume each disk block holds t tuples of a relation customer.
A relation customer has 100 tuples; and 10 disk blocks are used to hold
tuples of the relation. An attribute city indicates a city where a
customer lives. The customer relation is sorted by city (ascending).
There are 80 distinct values of the city in the customer relation.

For each of the following data access methods, estimate the I/O cost to
answer the query: Find information of customers who live in Charlottesville

1. Use no index (and thus need to go directly to the data file and do
sequential scan)

2. Use clustered index (assume search key of a clustered index is
based on city of the customer relation)

3. Use unclustered index (assume search key of an unclustered index
is based on an attribute that is not city)

Spring 2024 – University of Virginia 43© Praphamontripong

Thinking About Indexing Choices (2)
T(customer) = 100 # tuples
B(customer) = 10 # blocks
V(customer, city) = 80 # distinct values of attribute city

Estimate the I/O cost to answer the query: Find information of customers
who live in Charlottesville

1. Use no index (and thus need to go directly to the data file and do
sequential scan)

Spring 2024 – University of Virginia 44© Praphamontripong

Thinking About Indexing Choices (3)
T(customer) = 100 # tuples
B(customer) = 10 # blocks
V(customer, city) = 80 # distinct values of attribute city

Estimate the I/O cost to answer the query: Find information of customers
who live in Charlottesville

2. Use clustered index (assume search key of a clustered index is
based on city of the customer relation) – same order

Spring 2024 – University of Virginia 45© Praphamontripong

Thinking About Indexing Choices (4)
T(customer) = 100 # tuples
B(customer) = 10 # blocks
V(customer, city) = 80 # distinct values of attribute city

Estimate the I/O cost to answer the query: Find information of customers
who live in Charlottesville

3. Use unclustered index (assume search key of an unclustered index
is based on an attribute that is not city) – different (or no) order

Spring 2024 – University of Virginia 46© Praphamontripong

Create Indices in SQL
CREATE INDEX index_name ON table_name(column)

CREATE INDEX index_name ON table_name(column1, column2)

CREATE CLUSTERED INDEX index_name ON table_name(column1, column2)

Unclusted by default

Order specifies
precedence in sorting

Reorders data on disk
(fails if another clustered index exists)

Spring 2024 – University of Virginia 47© Praphamontripong

Leveraging Indices
students(ID, credits, age, …)
enroll(ID, course, section, semester, year, …)

Expecting 1000 executions/day
SELECT *
FROM students, enroll
WHERE students.ID = enroll.ID

Expecting 1000 executions/day
SELECT *
FROM students
WHERE credits > 100

Expecting 10 executions/day
SELECT *
FROM students
WHERE age > 21

What indices could we
make on students?

IDs are unique.
Unclustered index would do fine.

This range query would benefit
from a clustered index on credits

This range query would benefit
from a clustered index on age

Only one
can exists

Spring 2024 – University of Virginia 48© Praphamontripong

Leveraging Indices (2)
students(ID, credits, age, …)
enroll(ID, course, section, semester, year, …)

Expecting 1000 executions/day
SELECT *
FROM students, enroll
WHERE students.ID = enroll.ID

Expecting 1000 executions/day
SELECT *
FROM students
WHERE credits > 100

Expecting 10 executions/day
SELECT *
FROM students
WHERE age > 21

This range query would benefit
from a clustered index on credits

This range query would benefit
from a clustered index on age

Only one
can exists

Things to consider:
• Size of the expected result
• Execution time

Without more info, default to clustering
on the index that will be used more
(thus, clustered index on credits)

Spring 2024 – University of Virginia 49© Praphamontripong

Wrap-Up
• The existence of an index on an attribute

• May speed up the execution of the queries (in which a values or
a range of values is specified for that attributes), and

• May speed up joins involving that attribute.

• Every index built for one or more attributes of some relation makes
insertions / deletions / updates to that relation more complex and
time consuming.

• When creating indices, transactions that will be executed must be
taken into account.

Read-heavy DBs – can index a lot (if space allows)
Write-heavy DBs – index sparingly (take a balanced approach)
Write-only DBs – one or no index

Create indices to match expected query workload

