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Transactions and
Concurrency Control

CS 4750
Database Systems

[Silberschatz, Korth, Sudarshan, “Database System Concepts,” Ch.17, Ch.18]
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Transactions in SQL
How do we support multiple people using a database at the 
same time? 

• Multiple end-users
• Multiple programmers 
• Multiple analysts
• Multiple administrators

Make each person wait in line to use our database? 

[ref: https://www.clipart.email/make-a-clipart]
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Disclaimer: This image is used to help us envision an airplane seat map only. No other purposes. 
No association between CS 4750 and the airline. 

[Image from https://www.united.com/ual/en/us/fly/travel/inflight/aircraft/777-200.html#v6]

What Could Go Wrong …
Consider an airline that provides customer a web interface where 
they can choose a seat for their flight. 

This interface shows a map of available seats, and the data for 
this map is obtained from the airline’s database. 
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What Could Go Wrong …
There may be a relation such as 

Suppose there is a query to retrieve available seats such as

Flights(fltNo, fltDate, seatNo, seatStatus)

SELECT seatNo
FROM Flights
WHERE fltNo = 123 AND fltDate = ‘2022-04-13’

AND seatStatus = ‘available’;
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What Could Go Wrong …
When the customer clicks on an empty seat, say 21A, that seat is 
reserved for him/her. 

The database is modified by an update statement, such as 

UPDATE Flights
SET   seatStatus = ‘occupied’
WHERE fltNo = 123 AND fltDate = ‘2022-04-13’

AND seatNo = ‘21A’;
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Common Problem: Lost Update
However, this customer may not be the only one reserving a seat 
on flight 123 on 13-Apr-2022, this exact moment. 

Another customer may have asked for the seat map at the same 
time, in which case they also see seat 21A empty.

Both customers believe they have been granted seat 21A

This problem is solved in SQL by the notion of a “transaction”

User1 finds
seat empty

User1 sets seat 
21A occupied

User2 finds
seat empty

User2 sets seat 
21A occupied

time
Write-Write Conflict
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Transaction to the Rescue !!

• The query and update would be grouped into one transaction 
(running them serially, one at a time, with no overlapping)

• The importance, to the DB, is that a seat is assigned only once.

Transaction = a group of operations or sequence of operations 
that need to be performed together

tr
an

sa
ct

io
n

SELECT seatNo
FROM Flights
WHERE fltNo = 123 AND fltDate = ‘2022-04-13’

AND seatStatus = ‘available’;

UPDATE Flights
SET seatStatus = ‘occupied’
WHERE fltNo = 123 AND fltDate = ‘2022-04-13’

AND seatNo = ‘21A’;
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Banking Example
Accounts(acctNo, balance)

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

Withdraw $100 from 
saving account

Deposit $100 into 
checking account

T = transfer $100 from saving to checking account

Begin 
transaction

End
transaction

step1 step2

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;
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Accounts(acctNo, balance)

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

Withdraw $100 from 
saving account

Deposit $100 into 
checking account

T = transfer $100 from saving to checking account

Begin 
transaction

End
transaction

step1 step2

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

What happens if there is a failure after step1 but before step2?
(perhaps the server fails, or the DB connection fails) 

• The DB is left in a state where money has been taken out from the 
first account but not transferred into the second account

Non-atomic operation

Common Problem: Non-Atomic Op
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Solve Non-Atomic Op
Accounts(acctNo, balance)

These two updates must be done atomically
(either all operations are performed or none are)

Withdraw $100 from 
saving account

Deposit $100 into 
checking account

T = transfer $100 from saving to checking account

Begin 
transaction

End
transaction

step1 step2

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;
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Transaction
• Group (or sequence) of operations that need to be performed 

together, forming a single logical unit of work involving data items 
in a database

• Initiated by a user program (may be a complete program, a 
fraction of a program, or a single SQL or a series of SQL 
commands that may involve any number of processes)

Withdraw $100 from 
saving account

Deposit $100 into 
checking account

Transfer $100 from saving to checking account

Begin 
transaction

End
transaction

A transaction is indivisible
All-or-none property – “atomicity”
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DBMS and Transaction
By default, DBMS automatically treats each SQL statement as its 
own transaction

[SQL statements]

BEGIN TRANSACTION

COMMIT -- finalizes execution

[SQL statements]

BEGIN TRANSACTION

ROLLBACK -- undo everything
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Banking Example (revisit)
Accounts(acctNo, balance)

These two updates must be done atomically
(either all operations are performed or none are)

COMMIT (end successfully) 
or ROLLBACK (abort)

BEGIN TRANSACTION 
(start the transaction)

Note: different DBMS may have different SQL syntax (e.g., BEGIN vs. START)

Withdraw $100 from 
saving account

Deposit $100 into 
checking account

T = transfer $100 from saving to checking account

Begin 
transaction

End
transaction

step1 step2

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;
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Common Problem: Dirty Read
While a user is reading the availability of a certain seat, that seat is 
being booked / released by the execution of some other program. 

The user might get the answer “available” or “occupied,” depending on 
microscopic differences in the time at which the query is executed. 

User1 finds
seat empty

User1 sets seat 
21A occupied

User2 finds
seat empty

User2 sets seat 
??? occupied

time

BEGIN TRANSACTION

SET TRANSACTION READ ONLY
BEGIN TRANSACTION

COMMIT or ROLLBACK
Reservedà Confirmed

Occupied
Reservedà Not confirmed

Available
“dirty read”

Write-Read Conflict
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Common Problem: Unrepeatable Read
An employee is checking the company inventories while another 
program automatically update the inventories. 

The employee might get different numbers of items in the inventories, 
depending on microscopic differences in the time at which the query is 
executed. 

SELECT SUM(inventory) 
FROM product

SELECT category, SUM(inventory)
FROM product
GROUP BY category

UPDATE product 
SET inventory = 0
WHERE pid = 111

time employee program

Read-Write Conflict
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ACID Properties
Four properties of transactions that a DBMS follows to handle 
concurrent access while maintaining consistency 

A C I D 

Atomicity
• All or nothing

Consistency
• Start with 

consistent 
state, ends 
with 
consistent 
state

Isolation
• Concurrent 

transactions 
are isolated, 
executed 
without 
interference

Durability
• Committed 

transaction is 
persistent –
recoverable if 
the system 
fails

Atomicity, isolation, and durability enforce consistency

Ideally, a DBMS follows these principles; 
however, sacrificing them for performance gain is common
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Example: Transaction and ACID
Withdraw $100 from 

saving account
Deposit $100 into 
checking account

T = transfer $100 from saving to checking account

Begin 
transaction

End
transaction

T: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);

Atomicity: 
• If a failure occurs that 

prevents T from completing 
its execution successfully, 
reverse all changes so far

• Responsibility of DBMS 
(recovery system)

Transaction encapsulation, no partial completion

2nd most important aspect 
& need for programming
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Example: Transaction and ACID
Withdraw $100 from 

saving account
Deposit $100 into 
checking account

T = transfer $100 from saving to checking account

Begin 
transaction

End
transaction

T: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);

Consistency: 
• Consistent state

• No gain, no loose money

• Usually responsible by the 
application (programmer who 
codes the transaction)

• Constraints are given by client

Integrity constraints and application specification
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Example: Transaction and ACID
Withdraw $100 from 

saving account
Deposit $100 into 
checking account

T = transfer $100 from saving to checking account

Begin 
transaction

End
transaction

T: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);

Isolation: 
• Ensure that when several 

transactions are executed 
concurrently, their operations 
must not interleave and result 
in an inconsistent state

• Responsibility of DBMS 
(concurrency-control system)

Concurrency management – as if each were the only transaction running

The most important aspect

A & C give us 
functional 

transactions
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Example: Transaction and ACID
Withdraw $100 from 

saving account
Deposit $100 into 
checking account

T = transfer $100 from saving to checking account

Begin 
transaction

End
transaction

T: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);

Durability: 
• Once the transaction has been 

completed and confirmed, all 
updates must be permanent

• If failure occurs, the updates 
must be recoverable

• Responsibility of DBMS 
(recovery system)

Crash recovery; resistant to hardware failure
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Transaction Safe
• Transaction = sequence of SQL statements meant to follow ACID

• For a transaction to be durable, changes must be written to stable 
storage (e.g., duplicate data in several nonvolatile storage media)

• For a transaction to be atomic, log records must be written to stable 
storage before any changes are made to the database on disk

• A transaction may not always complete its execution successfully. 

• Abort a transaction that does not complete successfully

• To ensure ACID, an aborted transaction must have no effect on the 
state of the database

• Undo any changes that the aborted transaction made – “roll back” 
the transaction – responsibility of DBMS (recovery system)

• Durability and consistency: If something goes wrong, recover the 
original state; recoverable ensures database consistency
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Transaction States

active

partially
committed committed

failed aborted

Initial state
(stays while 
executing)

[based in part on Figure 14.1, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 634]

Log: (allow “undo” and “redo” to 
ensure atomicity, durability, 
consistency)
• Identifier of the transaction 

performing the modification
• Identifier of the data item 

being modified

• Old value (before modification)
• New value (after modification)

After the final statement has 
been executed
[actual output are temporarily 
residing in main memory]

After successful 
completion

After the transaction has 
been rolled back and the 
DB has been restored to 
its state before the start 
of the transaction

After the normal 
execution can no 
longer proceed 
(e.g., hardware 
or logical errors)

Call commit

Write things 
to memory 
(persistent)
Cannot be 
undone

Read log, 
roll back

[terminated]

[terminated]

restart kill

Hardware 
or software 
errors

Internal 
logical error

[new transaction] [fix the program]

Partially committed state 
enforces ACID by 

evaluating the transaction 
– to move to committed 
state or failed state and 

then aborted state
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Transaction – Atomicity and 
Consistency

[based in part on Figure 14.1, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 634]

Wait until a commit is called

active

partially
committed committed

failed aborted

If failure occurs, roll back
(undo until the original 

consistency is preserved)

Log: (allow “undo” and “redo” to 
ensure atomicity, durability, 
consistency)

• Identifier of the transaction 
performing the modification

• Identifier of the data item 
being modified

• Old value (before modification)
• New value (after modification)
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Transaction – Durability

active

partially
committed committed

failed aborted

[based in part on Figure 14.1, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 634]

Create a “Shadow copy” of a table being modified
Execute all queries on the shadow copy instead of 
the original table

[need extra space, add overhead]

Log: (allow “undo” and “redo” to 
ensure atomicity, durability, 
consistency)

• Identifier of the transaction 
performing the modification

• Identifier of the data item 
being modified

• Old value (before modification)
• New value (after modification)

Success – make the shadow 
copy a permanent copy

[may add too much overhead 
– try to avoid]

Fail – ignore the shadow copy
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Note on Transaction States
• Handling external writes (nonvolatile storage) can be complicated 

• The system may fail after the transaction enters the committed 
state but before it could complete the external writes

• Solutions:

• DBMS carries out the external writes when the system is restarted

• The application must be designed such that when the DB or system 
becomes available, the user can see whether the transaction had 
succeeded or not
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Example ACID Compliance
Database and DBMS that does 
not follow ACID properties

• NoSQL databases
• Distributed databases
• MyISAM

• Use “auto commit”

Database and DBMS that 
follows ACID properties

• Relational databases
• InnoDB
• Turn auto commit off

active

failed aborted

committed

active

partially
committed committed

failed aborted
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Isolation and Concurrency
• Systems usually allow multiple transactions to run concurrently, 

allowing multiple users to use a database at the same time

• Why concurrency:
• Improved throughput and resource utilization 

• Run multiple transactions in parallel à increase the number of 
transactions executed in a given amount of time; increase processor and 
disk utilization

• Reduced waiting time
• Allow a mix of transactions running on a system à reduce average 

response time (average time for a transaction to be completed after it has 
been submitted)

• Allowing multiple transactions to update data concurrently can 
cause data inconsistency

• When several transactions run concurrently, the isolation property 
may be violated, resulting in inconsistency – thus need 
concurrency-control schemes to manage scheduling
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Scheduling – Concurrency Control

Transaction 
manager

Scheduler

Read/Write requests

Reads and writes

Buffers

The scheduler takes read/write requests from transactions and 
either executes them in buffers or delays them. 

Schedules = sequence of interleaved actions from all transactions.

The order in which the instructions appear in each individual 
transaction must be preserved. 
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Serial Schedules
• A serial schedule = schedule consisting of a sequence of 

instructions from various transactions. 

• The operations belonging to a single transaction appears together 
in the schedule.  

• Every transaction appears to run independently
• Leaving an impression that nothing else is running concurrently

• “single-thread, single-execution”

• Can run really slow – average response time for users is very high

Isolation

Use pre-emptive 
schedule instead



Spring 2024 – University of Virginia 30© Praphamontripong

Non pre-emptive

• FCFS (First Come First Served)

• SJF (Shortest Job Frist)

Types of Scheduling
Pre-emptive

• SRTF (Shortest Remaining 
Time First)

Suppose a system has 3 processes with 
the arrival times and CPU (burst) time

Process# Arrival time CPU time
P1 0 6
P2 0 10
P3 2 2

P1 P2 P3
0 6 16 18

P1 P2P3
0 6 8 18

P1 P2P3 P1
0 2 8 184

Average response time is improved

Overall raw time remains the same
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Example: Scheduling
• Suppose two transactions T1 and T2 access saving and checking 

accounts. 

• T1 transfers $100 from saving to checking

• T2 transfers 10% of the balance from saving to checking

• What order should the instructions be executed in the system? 

T1: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);
commit

T2: read(saving);
temp = saving * 0.1;
saving = saving – temp;
write(saving);
read(checking);
checking = checking + temp;
write(checking);
commit



Spring 2024 – University of Virginia 32© Praphamontripong

Example: Serial Schedule (1)

[based in part on Figure 14.2, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 638]

T1 is followed by T2

T1: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);
commit

T2: read(saving);
temp = saving * 0.1;
saving = saving – temp;
write(saving);
read(checking);
checking = checking + temp;
write(checking);
commit

Serial scheduling
200

100
120

220

100

220
90

230

Suppose initially, 
saving =200
checking =120
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Example: Serial Schedule (2)

[based in part on Figure 14.3, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 638]

T2 is followed by T1

T1: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);
commit

T2: read(saving);
temp = saving * 0.1;
saving = saving – temp;
write(saving);
read(checking);
checking = checking + temp;
write(checking);
commit

Serial scheduling 200

180
120

140

180

140
80

240

Suppose initially, 
saving =200
checking =120
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Serializable Schedules
• A serial schedule = schedule consisting of a sequence of 

instructions from various transactions. The operations belonging 
to a single transaction appears together in the schedule.  

• Every transaction appears to run independently
• Leaving an impression that nothing else is running concurrently

• “single-thread, single-execution”

• Can run really slow – average response time for users is very high

A schedule is serializable if it is equivalent to a serial schedule

• A serializable schedule = schedule where transactions are 
executed with possible interleaving. The executions appear to be 
as if they were executed in serial order. 
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Example: Serializable Schedule

[based in part on Figure 14.4, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 640]

When several transactions are executed concurrently, transactions 
may be interleaved – goal: reduce response time

T1: read(saving);
saving = saving – 100;
write(saving);

T2: read(checking);
checking = checking + temp;
write(checking);
commit

T1: read(checking);
checking = checking + 100;
write(checking);
commit

T2: read(saving);
temp = saving * 0.1;
saving = saving – temp;
write(saving);

Final state is consistent

200

100

100

220

90

230

120

220

Suppose initially, 
saving =200
checking =120
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Example: Non-Serializable Schedule

[based in part on Figure 14.5, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 640]

T1: read(saving);
saving = saving – 100;

T2: checking = checking + temp;
write(checking);
commit

T1: write(saving); 
read(checking);
checking = checking + 100;
write(checking);
commit

T2: read(saving);
temp = saving * 0.1;
saving = saving – temp;
write(saving);
read(checking);

Final state is inconsistent

200

100

200

220

140

120

120

180

Suppose initially, 
saving =200
checking =120
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Checking Serializability
• How does the DBMS tell if a schedule is serializable? 

• Define “conflicts” and check for their interaction in a schedule

• Conflict = A pair of consecutive actions in a schedule such that, 
if their order is interchanged, then the behavior of at least on of 
the transactions involved can change

Types of conflicts

• Write-Write (WW) conflict – W1(X), W2(X)

• Write-Read (WR) conflict – W1(X), R2(X)

• Read-Write (RW) conflict – R1(X), W2(X)

Lost update

Dirty read

Unrepeatable read
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Pairs of actions that do not conflict (assume transactions T1, T2)

• R1(A); R2(B) is never a conflict, even if A = B

• R1(A); W2(B) is not a conflict, provided A != B

• W1(A); R2(B) is not a conflict if A!=B

• W1(A); W2(B) is not a conflict as long as A!=B

Checking Serializability

Goal: 
Swap / interleave nonconflicting operations to create 

“conflict serializable schedule”

Compliant with Isolation (ACID)
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Conflict Serializable Schedule
Situations where we may not swap the order of action (assume 
transactions T1, T2)

• Two actions of the same transaction; e.g., R1(A); W1(B)

• Two writes of the same database element by different transactions
conflict; e.g., W1(A); W2(B)

• A read and a write of the same database element by different 
transactions; e.g., R1(A); W2(A)

We may take any schedule and make as many 
nonconflicting swaps as we wish, with the goal of turning 

the schedule into a serial schedule.
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Conflict Serializable Schedule
• Since the write(A) instruction of T2 does not conflict with the read(B) 

instruction of T1, swap nonconflicting instructions to generate 
equivalent schedule

T1: read(A)
write(A)

T2: read(A)
T1: read(B)

T2: read(B)
write(B)

T2: write(A)
T1: write(B)

T1: read(A)
write(A)

T2: read(A)
write(A)

T1: read(B)
write(B)

T2: read(B)
write(B)

A schedule is conflict serializable if it is 
conflict equivalent to a serial schedule

Always consider moving nonconflicting operations to makes response time 
goes down (faster), leaving the users an impression that he/she has the 
DB to him/herself (isolation)
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• Transactions that read and write the same data should not switch 
between each other 

• No interleaving if operations are conflict 

T1: read(A, t)
t := t+100
write(A)

T2: read(A, s)
s := s*2
write(A, s)

T1: read(B, t)
t := t+100
write(B, t)

T2: read(B, s)
s := s*2
write(B, s)

125

125

250

250

A = 25 B = 25

Consistency is 
preserved

Start with A = B
End with A = B

“Serializable schedule”

Let read(A, t) be read A and save it in t

Conflict Serializable Schedule
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• Another example

T1: read(A, t)
t := t+100
write(A)
read(B, t)
t := t+100

T2: read(A, s)
s := s*2

T1: write(B, t)

T2: write(A, s)
read(B, s)
s := s*2
write(B, s)

125

125

250

250

A = 25 B = 25

Consistency is 
preserved

Start with A = B
End with A = B

“Serializable schedule”

Let read(A, t) be read A and save it in t

Conflict Serializable Schedule
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T1: read(A, t)
t := t+100
write(A)
read(B, t)
t := t+100

T2: read(A, s)
s := s*2
write(A, s)

T1: write(B, t)

T2: read(B, s)
s := s*2
write(B, s)

125

125

250

250

A = 25 B = 25

Consistency is 
preserved

Start with A = B
End with A = B

“Serializable schedule”

Let read(A, t) be read A and save it in t

Conflict Serializable Schedule
• Another example
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• What if the operations are interleaved

T1: read(A, t)
t := t+100

T2: read(A, s)
s := s*2
write(A, s)

T1: write(A)
read(B, t)
t := t+100
write(B, t)

T2: read(B, s)
s := s*2
write(B, s)

50

125

125

250

A = 25 B = 25

Consistency is 
not preserved

Start with A = B
End with A ≠ B

Let read(A, t) be read A and save it in t

Non Conflict Serializable Schedule
Lost update
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• What if we have a schedule that is not serializable nor conflict 
serializable -- different results depending on whether add or 
multiply is executed first

T1: read(A, t)
t := t+100
write(A)

T2: read(A, s)
s := s*2
write(A, s)
read(B, s)
s := s*2
write(B, s)

T1: read(B, t)
t := t+100
write(B, t)

125

50

250

150

A = 25 B = 25

Consistency is 
not preserved

Start with A = B
End with A ≠ B

Let read(A, t) be read A and save it in t

Non Conflict Serializable Schedule
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• DB changes during transactions. It is possible that as a 
transaction executes, it make changes to the DB.

• If the transaction aborts, it is possible that these changes were 
seen by some other transactions. The most common solution is 
to lock the changed item until COMMIT or ROLLBACK is chosen, 
thus preventing other transaction from seeing the tentative 
change.

• Scheduler (concurrency control manager) schedules operations 
from transactions as they arrive
• Run the operations right away vs. delay the operations
• Delaying operations may reduce performance
• Parallelism or shared operations may be used to allow performance 

gain

Wrap-Up


