
Spring 2024 – University of Virginia 1© Praphamontripong

NoSQL Database

CS 4750
Database Systems

Spring 2024 – University of Virginia 2© Praphamontripong

2 Main Types of Data Management

OLTP
(Online Transaction Processing)

OLAP
(Online Analytical Processing)

Transaction-heavy system Retrieving and analysis system

Insert, update, delete info Extract data for analyzing

Many simple lookup or single-join
queries

Many joins and aggregations

Many small updates and inserts Little to no updates

Managing consistency is crucial Query optimization is crucial

Tables are (by default) normalized Tables are (by default) not
normalized

revisit

Spring 2024 – University of Virginia 3© Praphamontripong

3-Tier Architecture for OLTP

[ref: https://en.wikipedia.org/wiki/Multitier_architecture]

Provide user interface.
Handles interactions

with users.

Include business logic,
processing information.

Physical storage layer
for data persistence.
Manage access to DB.

Spring 2024 – University of Virginia 4© Praphamontripong

RDBMS and ACID Properties
Four properties of transactions that a DBMS follows to handle
concurrent access while maintaining consistency

revisit

Spring 2024 – University of Virginia 5© Praphamontripong

Scaling Issues in Centralized DB
• As a DB gets bigger, we try to scale a DB server until a DB

become bottleneck.

• One way to solve the performance issues is to change from a
centralized DB to distributed DBs.

Spring 2024 – University of Virginia 6© Praphamontripong

Distributed DBs

• Fragmentation: need to coordinate operations across fragments
• Replication: need to synch to prevent inconsistent version
• Achieving ACID is challenging

ACID work in a centralized database system,
not in a distributed database system

[Ref: images from Pattamsetti, “Distributed Computing in Java 9”]

Spring 2024 – University of Virginia 7© Praphamontripong

CAP Theorem
• Consistency -- All copies (across nodes) have the same value

• Availability -- System can still function even if some nodes fail

• Partition tolerance -- System can function even if communication
between nodes (the partitions reside) fails

• Network can break into two or more parts, each with active systems
that communicate with the other parts

• Must have exactly two of the three properties for any system

• Very large system will partition by default, thus choose one of
consistency or availability
• Traditional database – choose consistency

• Most web apps – choose availability (except some specific/important
parts such as order/payment processing)

revisit

Spring 2024 – University of Virginia 8© Praphamontripong

Threats on CAP
• Only two of the three properties are guarantees:

• Consistency – every read receives the most recent write or an error
• Availability – every request must respond with a non-error
• Partition tolerance – continued operation in presence of dropped or

delayed message

• Distributed RDBMS – partition tolerance + consistency

• NoSQL systems – partition tolerance + availability

Achieving CAP can be very difficult with the growth of data.
Instead of using ACID or CAP, we may use a more relaxed set of
properties, BASE

revisit

Intended to be highly consistent – but may
sacrifice some consistency to boost availability

Intended to be highly available – but may
sacrifice some availability to boost consistency

Spring 2024 – University of Virginia 9© Praphamontripong

BASE Consistency Model
• With the enormous growth in data, achieving ACID or CAP

becomes very difficult.

• A more relaxed set of properties is BASE

• Basically Available, Soft state, Eventually consistent

• Key idea:

• Databases may not all be in the same state at the same time
(“soft state”)

• After synchronization is complete, the state will be consistent

Most failures do not
cause a complete
system outage

System is not always
write-consistent

Data will eventually
converge to agreed

values

Spring 2024 – University of Virginia 10© Praphamontripong

NoSQL – For Scaling and Flexibility
• Loose data model
• Give up built-in OLAP/analysis functionality
• Give up built-in ACID consistency
• Rely on BASE consistency model

[Ref: emoji by Ekarin Apirakthanakorn]

Facebook:
“I don’t care if I

don’t see every like
in real time”

Facebook:
“I care if I can’t

send a like”

Spring 2024 – University of Virginia 11© Praphamontripong

NoSQL Data Models
Key-value Graph

Document Column-family

Spring 2024 – University of Virginia 12© Praphamontripong

Example NoSQL Data Models
Implementation

Key-value

Column-family

Graph

Document

Spring 2024 – University of Virginia 13© Praphamontripong

NoSQL: Key-Value
• (key, value) pairs

• Key can be string, integer, …, unique for the entire data set

• Value can be any type

• Basic operations:
• get(key) – returns value

• put(key, value) – add (key, value) pair to the data set

• Example flight information as key-value pairs
key value
flightNumber Complete record of a particular flight
date All flight records on a particular date

(origin, destination, date) All flight records between the origin and the
destination on a particular date

Spring 2024 – University of Virginia 14© Praphamontripong

NoSQL: Document
• Data set can be any kinds of files that are parsable

• Structured document: CSV
• Semi-structured document: XML, JSON

• Human-readable, may be unordered, heterogeneous data,
fields may be skipped

• Example friend information as XML and JSON
XML JSON

Spring 2024 – University of Virginia 15© Praphamontripong

Relational DB vs. Semi-Structured
Documents

Relational Model
• Fixed schema
• Flat data
• Well-defined

Semi-Structured
• Self-described schema
• Tree-structure
• More flexible
• Extensible

Retrieve table

Scan through rows

Return data

Retrieve document

Parse document tree

Return data

Less well-defined / More flexible

Inefficient encoding / Easy data exchange

Spring 2024 – University of Virginia 16© Praphamontripong

JSON (JavaScript Object Notation)
• Data representation for storing and exchanging between server

and client

• Looks like JavaScript object, but it is just plain text data (not an
object)

• Light weight
• Plain text, containing only data to be transferred à fast and easy to

load
{
"friends": [
{
"name": "Humpty",
"email": "humpty@uva.edu",
"phone": "111-111-1111",
"age": 20

},
{
"name": "Dumpty”,
"email": "dumpty@uva.edu",
"phone": "222-222-2222",
"age": 21,
"BOD": "11/16/2000"

}
]

}

• Scalable
• Flexible, semi-structure, extensible

• Standard structure
• Easy to distribute data over the

Internet

• Multiple applications
• JSON data resource can easily be

reused to generate different view
(promoting MVC)

Spring 2024 – University of Virginia 17© Praphamontripong

How does JSON work?
• Data are presented in

property name-value pairs

• Strings and property names
(or keys) must be placed in
quotes

• The key is separated from
its value by a colon

• Each key-value pair is
separated by a comma. No
after the last key-value pair.

{
"friends": [

{
"name": "Humpty",
"email": "humpty@uva.edu",
"phone": "111-111-1111",
"age": 20

},
{

"name": "Dumpty”,
"email": "dumpty@uva.edu",
"phone": "222-222-2222",
"age": 21,
"BOD": "11/16/2000"

}
]

}

Spring 2024 – University of Virginia 18© Praphamontripong

How does JSON work? (cont.)
Values can be any of the
following data types:

• String – text (must be in
double quotes)

• Number

• Boolean

• Array – array of values or
objects; enclosed by []

• Object – JavaScript object
(can contain child objects
or arrays); enclosed by {}

• Null – when the value is
empty or missing

{
"friends": [

{
"name": "Humpty",
"email": "humpty@uva.edu",
"phone": "111-111-1111",
"age": 20

},
{

"name": "Dumpty”,
"email": "dumpty@uva.edu",
"phone": "222-222-2222",
"age": 21,
"BOD": "11/16/2000"

}
]

}

Spring 2024 – University of Virginia 19© Praphamontripong

{
"name": "Humpty",
"email": "humpty@uva.edu",
"phone": "111-111-1111",
"phone": "222-222-2222",
"age": 20

}

Duplicate keys are not
allowed

{
"name": "Humpty",
"email": "humpty@uva.edu",
"phone": ["111-111-1111",

"222-222-2222”],
"age": 20

}

Use an array instead

How does JSON work? (cont.)

Spring 2024 – University of Virginia 20© Praphamontripong

{

}

”events”: [

]

{
”place”: “Charlottesville, VA”,
“date”: “July 20”,
“map”: “img/map-va.png”

},

{
”place”: “Austin, TX”,
“date”: “July 23”,
“map”: “img/map-tx.png”

},

{
”place”: “New York, NY”,
“date”: “July 30”,
“map”: “img/map-ny.png”

}

Object
Array

More JSON Example

Spring 2024 – University of Virginia 21© Praphamontripong

Semi-Structured Data à Tree

friends

name

0 1

email phone age name email phone age

Humpty

humpty@
uva.edu

111-111-
1111

20 21Dumpty

dumpty@
uva.edu

222-222-
2222

BOD

11/16/
2000

{
"friends": [
{
"name": "Humpty",
"email": "humpty@uva.edu",
"phone": "111-111-1111",
"age": 20

},
{
"name": "Dumpty”,
"email": "dumpty@uva.edu",
"phone": "222-222-2222",
"age": 21,
"BOD": "11/16/2000"

}
]

}

Spring 2024 – University of Virginia 22© Praphamontripong

From Relational to Semi-Structured

Name Phone
Humpty 111-111-1111
Dumpty 222-222-2222
Wacky 333-333-3333

Person How is a table mapped to a
semi-structured document?

Person

0 21

A table is just an
array of elements

(rows)

Name Phone

Dumpty 222-222-
2222

Rows are just
simple (unnested)

objects

Spring 2024 – University of Virginia 23© Praphamontripong

From Relational to Semi-Structured

Name Phone
Humpty 111-111-1111
Dumpty 222-222-2222
Wacky 333-333-3333

Person {
"Person": [

{
"Name": "Humpty",
"Phone": "111-111-1111",

},
{

"Name": "Dumpty",
"phone": "222-222-2222",

},
{

"Name": "Wacky",
"phone": "333-333-3333"

}
]

}

Spring 2024 – University of Virginia 24© Praphamontripong

From Relational to Semi-Structured

Name Phone
Humpty 111-111-1111
Dumpty 222-222-2222
Wacky NULL

Person {
"Person": [

{
"Name": "Humpty",
"Phone": "111-111-1111",

},
{

"Name": "Dumpty",
"phone": "222-222-2222",

},
{

"Name": "Wacky",
"phone": NULL

}
]

}

How can NULL
be represented?

Spring 2024 – University of Virginia 25© Praphamontripong

From Relational to Semi-Structured

Name Phone
Humpty 111-111-1111
Dumpty 222-222-2222
Wacky NULL

Person {
"Person": [

{
"Name": "Humpty",
"Phone": "111-111-1111",

},
{

"Name": "Dumpty",
"phone": "222-222-2222",

},
{

"Name": "Wacky"
}

]
}

How can NULL
be represented?

Ok if a field is
missing

Spring 2024 – University of Virginia 26© Praphamontripong

{
"Person": [

{
"Name": "Humpty",
"Phone": "111-111-1111",

},
{

"Name": "Dumpty",
"phone": "222-222-2222",

},
{

"Name": "Wacky",
"phone": "333-333-3333"

}
]

}

From Relational to Semi-Structured

Name Phone
Humpty 111-111-1111
Dumpty 222-222-2222
Wacky 333-333-3333

Person

[Ref: emoji by Ekarin Apirakthanakorn]

Are there things that
the relational model
cannot represent?

Spring 2024 – University of Virginia 27© Praphamontripong

{
"Person": [

{
"Name": "Humpty",
"Phone": [

"111-111-1111",
"111-111-1234”

]
},
{

"Name": "Dumpty",
"phone": "222-222-2222",

},
{

"Name": "Wacky",
"phone": "333-333-3333"

}
]

}

From Relational to Semi-Structured

Name Phone

Humpty [111-111-1111,
111-111-1234]

Dumpty 222-222-2222
Wacky 333-333-3333

Person

Array data
(non-flat data)

Things that the
Relational model
cannot represent

Non-flat data

Spring 2024 – University of Virginia 28© Praphamontripong

{
"Person": [

{
"Name": {

"fname": "Humpty",
"lname": "Fuzzy”

},
"Phone": "111-111-1111"

},
{

"Name": "Dumpty",
"phone": "222-222-2222",

},
{

"Name": "Wacky",
"phone": "333-333-3333"

}
]

}

From Relational to Semi-Structured

Name Phone

111-111-1111

Dumpty 222-222-2222
Wacky 333-333-3333

Person

Things that the
Relational model
cannot represent

Non-flat data

Multi-part data
(non-flat data)

fname lname

Humpty Fuzzy

Spring 2024 – University of Virginia 29© Praphamontripong

From Relational to Semi-Structured

Name Phone
Humpty 111-111-1111
Dumpty 222-222-2222
Wacky 333-333-3333

Person

How do we represent
foreign keys?

[Ref: emoji by Ekarin Apirakthanakorn]

Name Date Dish
Humpty 11/11/2021 Taco
Dumpty 10/29/2021 Pizza
Dumpty 11/15/2021 Taco

Orders

Spring 2024 – University of Virginia 30© Praphamontripong

From Relational to Semi-Structured

Name Phone
Humpty 111-111-1111
Dumpty 222-222-2222
Wacky 333-333-3333

Person

Name Date Dish
Humpty 11/11/2021 Taco
Dumpty 10/29/2021 Pizza
Dumpty 11/15/2021 Taco

Orders

{
"Person": [

{
"Name": "Humpty",
"Phone": "111-111-1111",
"Orders": [

{
"Date": "11/11/2021",
"Dish": "Taco"

}
]

},
{

"Name": "Dumpty",
"phone": "222-222-2222",
"Orders": [

{
"Date": "10/29/2021",
"Dish": "Piazza"

},
{

"Date": "11/15/2021",
"Dish": "Taco"

}
]

},
{

"Name": "Wacky",
"phone": "333-333-3333"

}
]

}

Nested foreign keys à
nested objects in JSON

Pros and Cons?

Spring 2024 – University of Virginia 31© Praphamontripong

• E-R and relational data model – each start with a schema.

• The data in a relational database must fit the schema, and the
schema is known to the query processor.

• Traditional RDBMS uses SQL syntax and queries to retrieve and
manipulate data.

• Sometimes, data are fuzzy and come in a semi-structured or
unstructured format.

• Focusing on flexibility, we need loose data model (schemaless or
semi-structured data model)

• The schemaless or semi-structured data model may make query
processing harder.

• Relational data model – more well-defined; fixed schema; more
efficient encoding

• NoSQL – less well-defined; flexible schema; easy data exchange

Wrap-Up

Spring 2024 – University of Virginia 32© Praphamontripong

Wrap-Up (2)
• RDBMS – intended to be highly consistent (boost availability by

sacrificing some consistency)

• NoSQL – intended to be highly available (boost consistency by
sacrificing some availability)

• Relational database systems – ACID
• Distributed database systems – CAP
• NoSQL systems – BASE

• Most applications compromise, depending business logic
• Consistency / availability
• Scalability
• Usability
• Analysis requirements

No silver-bullet !!

