Variational Autoencoders

Tom Fletcher

March 25, 2019
Talking about this paper:

Autoencoders

\[x \in \mathbb{R}^D \quad z \in \mathbb{R}^d \quad x' \in \mathbb{R}^D \]

\[d \ll D \]
Autoencoders

- Linear activation functions give you PCA
- Training:
 1. Given data x, feedforward to x' output
 2. Compute loss, e.g., $L(x, x') = \|x - x'\|^2$
 3. Backpropagate loss gradient to update weights
- Not a generative model!
Variational Autoencoders

\[x \in \mathbb{R}^D \quad z \sim N(\mu, \sigma^2) \quad x' \in \mathbb{R}^D \]
Generative Models

Sample a new x in two steps:

Prior: $p(z)$
Generator: $p_{\theta}(x \mid z)$

Now the analogy to the “encoder” is:

Posterior: $p(z \mid x)$
Posterior Inference

Posterior via Bayes’ Rule:

\[p(z \mid x) = \frac{p_\theta(x \mid z)p(z)}{\int p_\theta(x \mid z)p(z) \, dz} \]

Integral in denominator is (usually) intractable!

Could use Monte Carlo to approximate, but it’s expensive
Kullback-Leibler Divergence

\[D_{KL}(q\|p) = -\int q(z) \log \left(\frac{p(z)}{q(z)} \right) dz \]

\[= E_q \left[- \log \left(\frac{p}{q} \right) \right] \]

The average *information gained* from moving from \(q \) to \(p \)
Variational Inference

Approximate intractable posterior $p(z \mid x)$ with a manageable distribution $q(z)$

Minimize the KL divergence: $D_{KL}(q(z)\|p(z \mid x))$
Evidence Lower Bound (ELBO)

\[D_{KL}(q(z) \| p(z \mid x)) \]

\[= E_q \left[- \log \left(\frac{p(z \mid x)}{q(z)} \right) \right] \]

\[= E_q \left[- \log \frac{p(z, x)}{q(z)p(x)} \right] \]

\[= E_q \left[- \log p(z, x) - \log q(z) + \log p(x) \right] \]

\[= -E_q[\log p(z, x)] + E_q[\log q(z)] + \log p(x) \]

\[\log p(x) = D_{KL}(q(z) \| p(z \mid x)) + L[q(z)] \]

ELBO: \[L[q(z)] = E_q[\log p(z, x)] - E_q[\log q(z)] \]
Variational Autoencoder

Encoder Network

Decoder Network

Maximize ELBO:

\[\mathcal{L}(\theta, \phi, x) = E_{q_{\phi}}[\log p_{\theta}(x, z) - \log q_{\phi}(z | x)] \]
VAE ELBO

\[\mathcal{L}(\theta, \phi, x) = E_{q_\phi}[\log p_\theta(x, z) - \log q_\phi(z \mid x)] \]

\[= E_{q_\phi}[\log p_\theta(z) + \log p_\theta(x \mid z) - \log q_\phi(z \mid x)] \]

\[= E_{q_\phi} \left[\log \frac{p_\theta(z)}{q_\phi(z \mid x)} + \log p_\theta(x \mid z) \right] \]

\[= -D_{KL}(q_\phi(z \mid x) \parallel p_\theta(z)) + E_{q_\phi}[\log p_\theta(x \mid z)] \]

Problem: Gradient \(\nabla_\phi E_{q_\phi}[\log p_\theta(x \mid z)] \) is intractable!

Use Monte Carlo approx., sampling \(z^{(s)} \sim q_\phi(z \mid x) \):

\[\nabla_\phi E_{q_\phi}[\log p_\theta(x \mid z)] \approx \frac{1}{S} \sum_{s=1}^{S} \log p_\theta(x \mid z) \nabla_\phi \log q_\phi(z^{(s)}) \]
Reparameterization Trick

What about the other term?

$$-D_{KL}(q_\phi(z \mid x) \Vert p_\theta(z))$$

Says encoder, $q_\phi(z \mid x)$, should make code z look like prior distribution

Instead of encoding z, encode parameters for a normal distribution, $N(\mu, \sigma^2)$
Reparameterization Trick

\[q_\phi(z_j \mid x^{(i)}) = N(\mu_j^{(i)}, \sigma_j^{2(i)}) \]
\[p_\theta(z) = N(0, I) \]

KL divergence between these two is:

\[D_{KL}(q_\phi(z \mid x^{(i)}) \| p_\theta(z)) = -\frac{1}{2} \sum_{j=1}^{d} \left(1 + \log(\sigma_j^{2(i)}) - (\mu_j^{(i)})^2 - \sigma_j^{2(i)} \right) \]
Results from Kingma & Welling