Learning Deep Representations for Ground-to-Aerial Geolocalization
Ground-View and Aerial-View
Match ground-view images to aerial-view ones

- Inspired by deep learning success in facial verification
- Using CNN for processing
- Propose “Where-CNN”
- There are similar approaches(IM2GPS + 3 similar)
Dataset

- Google street-view and 45 aerial view images
- Seven cities, different styles
- Including urban and suburban areas
Feature representations

- Hand-crafted features
- Generic deep-learning feature representations
- Learned feature representations from data
Network Architecture

Training

Testing

\[f_A(x), f_B(y) \in \mathbb{R}^d \]

\[d \ll n \]

\[x, y \in \mathbb{R}^n \]
Precision comparison with other features
Comparison between different initialization

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>41.9%</td>
<td>41.4%</td>
</tr>
</tbody>
</table>
Output example

(a) Easy positive pairs.

(b) Hard negative pairs.
Strong activations
Possible matches and locations
Possible matches and locations
Geolocalization task