Rich feature hierarchies for accurate object detection and semantic segmentation
Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik

Presented by Nick Bergh and Tom Molinari
Problem Background

- Object recognition in PASCAL VOC dataset plateaued 2010-2012
- General approach was SIFT and HOG
- Fukushima’s neocognitron attempted to use a hierarchical and shift invariant approach
- CNNs work well on ImageNet
- This approach tries to use CNNs in conjunction with object detection in order to boost performance
Key Metrics

Model Evaluation
 mAP - Mean Average Precision

Region Evaluation
 IoU - Intersection over Union

Train/Test Splitting
 Relative Imbalance
Model overview

R-CNN: Regions with CNN features

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features
4. Classify regions
Region Proposals

- Calculated using Selective Search for Object Recognition (Uijlings, et. al.)
CNN Features

- Used the region selections as input into the canonical Krizhevsky, Sutskever, Hinton paper
 - Also known as Alex net
 - Utilized most of the popular techniques which we use: convolutional layers -> FC layers, dropout, momentum, weight decay
- Input regions were stretched to fit the 227x227 input size of Alex net
Clever Optimizations

Supervised Pre-training

Domain Specific Tuning

 Bounding Box Regressors

 SVM (as classifier)

Mining Hard Negatives
Results

- Only submitted results for evaluation twice (once with and once without bounding box regression)
- PASCAL VOC 2010
 - 53.3% mAP
 - Compared to 35.1% mAP in Uijlings, et. al.
- ILSVRC2013 (Imagenet)
Conclusion

Preselection of regions of interest helps
Alex net can be adapted to different data sets
Domain specific training helps
 bounding box regression
Questions?