

Very Deep ConvNets for Large-Scale Image Recognition

Karen Simonyan, Andrew Zisserman Visual Geometry Group, University of Oxford

ILSVRC Workshop 12 September 2014

Summary of VGG Submission

- Localisation task
 - 1st place, 25.3% error
- Classification task
 - 2nd place, 7.3% error
- Key component: **very deep** ConvNets
 - up to 19 weight layers

Effect of Depth

- How does ConvNet depth affect the performance?
- Comparison of ConvNets
 - same generic design fair evaluation
 - increasing depth
 - from 11 to 19 weight layers

Network Design

Key design choices:

- 3x3 conv. kernels very small
- conv. stride 1 no loss of information

Other details:

- Rectification (ReLU) non-linearity
- 5 max-pool layers (x2 reduction)
- no normalisation
- 3 fully-connected (FC) layers

Discussion

Why 3x3 layers?

- Stacked conv. layers have a large receptive field
 - two 3x3 layers 5x5 receptive field
 - three 3x3 layers 7x7 receptive field
- More non-linearity
- Less parameters to learn
 - ~140M per net

Training

- Solver
 - multinomial logistic regression
 - mini-batch gradient descent with momentum
 - dropout and weight decay regularisation
 - fast convergence (74 training epochs)
- Initialisation
 - large number of ReLU layers prone to stalling
 - most shallow net (11 layers) uses Gaussian initialisation
 - deeper nets
 - top 4 conv. and FC layers initialised with 11 layer net
 - other layers random Gaussian

Training (2)

- Multi-scale training
 - randomly-cropped ConvNet input
 - fixed-size 224x224
 - different training image size
 - 256xN
 - 384xN
 - [256;512]xN random image size (scale jittering)
- Standard jittering
 - random horizontal flips
 - random RGB shift

N≥256

N≥384

Testing

- Dense application over the whole image
 - FC layers converted to conv. layers
 - sum-pooling of class score maps
 - more efficient than applying the net to multiple crops
- Jittering
 - multiple image sizes: 256xN, 384xN, etc.
 - horizontal flips
 - class scores averaged

Implementation

- Heavily-modified Caffe C++ toolbox
- Multiple GPU support
 - 4 x NVIDIA Titan, off-the-shelf workstation
 - data parallelism for training and testing
 - ~3.75 times speed-up, 2-3 weeks for training

Comparison – Fixed Training Size

Top-5 Classification Error (Val. Set)

• 16 or 19 layers trained on 384xN images are the best

Comparison – Random Training Size

Top-5 Classification Error (Val. Set)

- Training scale jittering is better than fixed scales
- Before submission: single net, FC-layers tuning

Comparison – Random Training Size

Top-5 Classification Error (Val. Set)

- Training scale jittering is better than fixed scales
- After submission: three nets, all-layers tuning

Final Results

Top-5 Classification Error (Test Set)

- 2nd place with 7.3% error
 - combination of 7 models: 6 fixed-scale, 1 multi-scale
- Single model: 8.4% error

Final Results (Post-Competition)

Top-5 Classification Error (Test Set)

- 2nd place with 7.0% error
 - combination of two multi-scale models (16- and 19-layer)
- Single model: 7.3% error

Localisation

Our localisation method

- Builds on very deep classification ConvNets
- Similar to OverFeat
 - 1. Localisation ConvNet predicts a set of bounding boxes
 - 2. Bounding boxes are merged
 - 3. Resulting boxes are scored by a classification ConvNet

Localisation (2)

- Last layer predicts a bbox for each class
 - Bbox parameterisation: (x,y,w,h)
 - 1000 classes x 4-D / class = 4000-D

- Training
 - Euclidean loss
 - initialised with a classification net
 - fine-tuning of **all** layers

Final Results

Top-5 Localisation Error (Test Set)

- 1st place with 25.3% error
 - combination of 2 localisation models

Summary

- Excellent results using classical ConvNets
 - small receptive fields
 - but very deep \rightarrow lots of non-linearity
- Depth matters!
- Details in the arXiv pre-print: arxiv.org/pdf/1409.1556/

VGG Team ILSVRC Progress

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPUs used for this research.