CS4501: Introduction to Computer Vision
Neural Networks + Backpropagation
Last Class

• Softmax Classifier
• Generalization / Overfitting
• Pytorch
Today’s Class

• Global Features
• The perceptron model
• Neural Networks – multilayer perceptron model (MLP)
• Backpropagation
Supervised Machine Learning Steps

Training

- Training Images
- Image Features
- Training
- Training Labels
- Learned model

Testing

- Test Image
- Image Features
- Prediction
Supervised Learning – Softmax Classifier

\(x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}] \)

Extract features

Run features through classifier

\[
\begin{align*}
g_c &= w_{c1}x_{i1} + w_{c2}x_{i2} + w_{c3}x_{i3} + w_{c4}x_{i4} + b_c \\
g_d &= w_{d1}x_{i1} + w_{d2}x_{i2} + w_{d3}x_{i3} + w_{d4}x_{i4} + b_d \\
g_b &= w_{b1}x_{i1} + w_{b2}x_{i2} + w_{b3}x_{i3} + w_{b4}x_{i4} + b_b
\end{align*}
\]

Get predictions

\[
\hat{y}_i = [f_c \ f_d \ f_b]
\]

\[
\begin{align*}
f_c &= e^{g_c}/(e^{g_c} + e^{g_d} + e^{g_b}) \\
f_d &= e^{g_d}/(e^{g_c} + e^{g_d} + e^{g_b}) \\
f_b &= e^{g_b}/(e^{g_c} + e^{g_d} + e^{g_b})
\end{align*}
\]
Last Class:
(mini-batch) Stochastic Gradient Descent (SGD)

\[\lambda = 0.01 \]

Initialize \(w \) and \(b \) randomly

\[l(w, b) = \sum_{i \in B} -\log f_i, label(w, b) \]

\(B \) is a small set of training examples.

\(\text{for } e = 0, \text{num_epochs} \text{ do} \)
\(\text{for } b = 0, \text{num_batches} \text{ do} \)
 \(\text{Compute: } \frac{dl(w, b)}{dw} \text{ and } \frac{dl(w, b)}{db} \)
 \(\text{Update } w: \quad w = w - \lambda \frac{dl(w, b)}{dw} \)
 \(\text{Update } b: \quad b = b - \lambda \frac{dl(w, b)}{db} \)
 \(\text{Print: } l(w, b) \quad // \text{Useful to see if this is becoming smaller or not.} \)
\(\text{end} \)
\(\text{end} \)
Generalization

- Generalization refers to the ability to correctly classify never before seen examples
- Can be controlled by turning “knobs” that affect the complexity of the model

Training set (labels known) Test set (labels unknown)
Overfitting

\(f \) is linear

\(f \) is cubic

\(f \) is a polynomial of degree 9

\(\text{Loss}(w) \) is high

\(\text{Loss}(w) \) is low

\(\text{Loss}(w) \) is zero!

Underfitting

Overfitting

High Bias

High Variance
Pytorch: Project Assignment 4

- http://vicenteordonez.com/vision/
Image Features

- In your Project 4: Nearest Neighbors + Softmax Classifier features are:

 Image: 3x32x32

 Feature: 3072-dim vector
Image Features: Color

Photo by: marielito

slide by Tamara L. Berg
80 million tiny images: a large dataset for non-parametric object and scene recognition

Antonio Torralba, Rob Fergus and William T. Freeman
However, these are all images of people but the colors in each image are very different.

Scikit-image implementation
Image Features: HoG

+ Block Normalization

Figure from Zhuolin Jiang, Zhe Lin, Larry S. Davis, ICCV 2009 for human action recognition.
Image Features: GIST

The “gist” of a scene: Oliva & Torralba, 2001
Image Features: GIST

Oriented edge response at multiple scales (5 spatial scales, 6 edge orientations)

Hays and Efros, SIGGRAPH 2007
Image Features: GIST

Aggregated edge responses over 4x4 windows

Hays and Efros, SIGGRAPH 2007
Image Features: Bag of (Visual) Words Representation

Object → Bag of ‘words’
Summary: Image Features

- Largely replaced by Neural networks
- Still useful to study for inspiration in designing neural networks that compute features.

- Many other features proposed
 - LBP: Local Binary Patterns: Useful for recognizing faces.
 - Dense SIFT: SIFT features computed on a grid similar to the HOG features.
 - etc.
Perceptron Model

Frank Rosenblatt (1957) - Cornell University

\[f(x) = \begin{cases}
1, & \text{if } \sum_{i=0}^{n} w_i x_i + b > 0 \\
0, & \text{otherwise}
\end{cases} \]

More: https://en.wikipedia.org/wiki/Perceptron
Perceptron Model

Frank Rosenblatt (1957) - Cornell University

\[f(x) = \begin{cases}
1, & \text{if } \sum_{i=0}^{n} w_i x_i + b > 0 \\
0, & \text{otherwise}
\end{cases} \]

More: https://en.wikipedia.org/wiki/Perceptron
Perceptron Model

Frank Rosenblatt (1957) - Cornell University

\[f(x) = \begin{cases}
1, & \text{if } \sum_{i=0}^{n} w_i x_i + b > 0 \\
0, & \text{otherwise}
\end{cases} \]

More: https://en.wikipedia.org/wiki/Perceptron
Activation Functions

ReLU (x) = max(0, x)

Tanh (x)

Sigmoid (x)

Step (x)

ReLU (x) = max(0, x)
import torch
import torch.nn as nn
import torch.autograd

network = nn.Sequential(
 nn.Linear(4, 1),
 nn.Sigmoid()
)

batch_size = 16
input_vector = torch.autograd.Variable(torch.Tensor(batch_size, 4))
predictions = network(input_vector)
print(predictions.size())

torch.Size([16, 1])
Two-layer Multi-layer Perceptron (MLP)

\[\sum \rightarrow \text{Activation} \rightarrow a_1 \rightarrow \sum \rightarrow a_2 \rightarrow \sum \rightarrow a_3 \rightarrow \sum \rightarrow a_4 \rightarrow \sum \rightarrow \hat{y}_1 \rightarrow \text{Loss / Criterion} \]

- \(x_1, x_2, x_3, x_4 \) are inputs.
- \(a_1, a_2, a_3, a_4 \) are activations in the "hidden" layer.
- \(\hat{y}_1 \) is the predicted output.
- \(y_1 \) is the actual output.

\(\sum \) denotes summation.
Forward pass

\[z_i = \sum_{i=0}^{n} w_{1ij}x_i + b_1 \]

\[a_i = \text{Sigmoid}(z_i) \]

\[p_1 = \sum_{i=0}^{n} w_{2i}a_i + b_2 \]

\[y_1 = \text{Sigmoid}(p_i) \]

\[\text{Loss} = L(y_1, \hat{y}_1) \]
Backward pass

\[
\frac{\partial L}{\partial x_k} = \left(\frac{\partial}{\partial x_k} \sum_{i=0}^{n} w_{1ij} x_i + b_1 \right) \frac{\partial L}{\partial z_i}
\]

\[
\frac{\partial L}{\partial z_i} = \frac{\partial}{\partial z_i} \text{Sigmoid}(z_i) \frac{\partial L}{\partial a_k}
\]

\[
\frac{\partial L}{\partial a_k} = \left(\frac{\partial}{\partial a_k} \sum_{i=0}^{n} w_{2i} a_i + b_2 \right) \frac{\partial L}{\partial p_1}
\]

\[
\frac{\partial L}{\partial p_1} = \frac{\partial}{\partial p_1} \text{Sigmoid}(p_i) \frac{\partial L}{\partial \hat{y}_1}
\]

\[
\frac{\partial L}{\partial \hat{y}_1} = \frac{\partial}{\partial \hat{y}_1} L(y_1, \hat{y}_1)
\]

\[
\frac{\partial L}{\partial w_{1ij}} = \frac{\partial x_k}{\partial w_{1ij}} \frac{\partial L}{\partial x_k}
\]

\[
\frac{\partial L}{\partial w_{2i}} = \frac{\partial a_k}{\partial w_{2i}} \frac{\partial L}{\partial a_k}
\]
Pytorch – Two-layer MLP + Regression

```python
In [9]:
import torch
import torch.nn as nn
import torch.autograd

network = nn.Sequential(
    nn.Linear(4, 4),
    nn.Sigmoid(),
    nn.Linear(4, 1),
    nn.Sigmoid()
)

batch_size = 16
input_vector = torch.autograd.Variable(torch.Tensor(batch_size, 4))
predictions = network(input_vector)
predictions.size()
print(predictions.size())
torch.Size([16, 1])

In [10]:
criterion = nn.MSELoss()
loss = criterion(predictions, labels)
```
Pytorch – Two-layer MLP + LogSoftmax

```
In [16]:
import torch
import torch.nn as nn
import torch.autograd

network = nn.Sequential(
    nn.Linear(3072, 512),
    nn.Sigmoid(),
    nn.Linear(512, 10),
    nn.LogSoftmax()
)

batch_size = 16
input_vector = torch.autograd.Variable(torch.Tensor(batch_size, 3072))
predictions = network(input_vector)
print(predictions.size())

torch.Size([16, 10])

In [13]:
criterion = nn.NLLLoss()
loss = criterion(predictions, labels)
```
Pytorch – Two-layer MLP + LogSoftmax

In [17]:
```python
import torch
import torch.nn as nn
import torch.autograd

network = nn.Sequential(
    nn.Linear(3072, 512),
    nn.Sigmoid(),
    nn.Linear(512, 10),
)

batch_size = 16
input_vector = torch.autograd.Variable(torch.Tensor(batch_size, 3072))
predictions = network(input_vector)
print(predictions.size())
```

LogSoftmax + Negative Likelihood Loss

In [13]:
```python
criterion = nn.CrossEntropyLoss()
loss = criterion(predictions, labels)
```
PyTorch documentation

PyTorch is an optimized tensor library for deep learning using GPUs and CPUs.

Notes

- Autograd mechanics
- Broadcasting semantics
- CUDA semantics
- Extending PyTorch
- Multiprocessing best practices
- Serialization semantics

Package Reference

- torch
- torch.Tensor
- torch.sparse
- torch.Storage
- torch.nn
- torch.nn.functional
Questions?