CS4501: Introduction to Computer Vision

Neural Networks +

Convolutional Neural Networks
Last Class

- Global Features
- The perceptron model
- Neural Networks – multilayer perceptron model (MLP)
- Backpropagation
Today’s Class

- Neural Networks – multilayer perceptron model (MLP)
- Backpropagation
- Convolutional Neural Networks
Perceptron Model
Frank Rosenblatt (1957) - Cornell University

\[
f(x) = \begin{cases}
1, & \text{if } \sum_{i=0}^{n} w_i x_i + b > 0 \\
0, & \text{otherwise}
\end{cases}
\]

More: https://en.wikipedia.org/wiki/Perceptron
Perceptron Model

Frank Rosenblatt (1957) - Cornell University

\[f(x) = \begin{cases}
1, & \text{if } \sum_{i=0}^{n} w_i x_i + b > 0 \\
0, & \text{otherwise}
\end{cases} \]

More: https://en.wikipedia.org/wiki/Perceptron
Perceptron Model

Frank Rosenblatt (1957) - Cornell University

\[
f(x) = \begin{cases}
1, & \text{if } \sum_{i=0}^{n} w_{i}x_{i} + b > 0 \\
0, & \text{otherwise}
\end{cases}
\]

More: https://en.wikipedia.org/wiki/Perceptron
Activation Functions

Step(x)

- \(y = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases} \)

Tanh(x)

- \(y = \tanh(x) \)

Sigmoid(x)

- \(y = \frac{1}{1 + e^{-x}} \)

ReLU(x) = max(0, x)

- Graphs showing the step function, tanh function, sigmoid function, and ReLU function.
In [5]:

```python
import torch
import torch.nn as nn
import torch.autograd

network = nn.Sequential(
    nn.Linear(4, 1),
    nn.Sigmoid()
)

batch_size = 16
input_vector = torch.autograd.Variable(torch.Tensor(batch_size, 4))
predictions = network(input_vector)
print(predictions.size())

torch.Size([16, 1])
```
Two-layer Multi-layer Perceptron (MLP)
Forward pass

\[z_i = \sum_{i=0}^{n} w_{1ij}x_i + b_1 \]

\[a_i = \text{Sigmoid}(z_i) \]

\[p_1 = \sum_{i=0}^{n} w_{2ia} + b_2 \]

\[y_1 = \text{Sigmoid}(p_i) \]

\[\text{Loss} = L(y_1, \hat{y}_1) \]
Backward pass

\[
\frac{\partial L}{\partial x_k} = (\frac{\partial}{\partial x_k} \sum_{i=0}^{n} w_{1ik} x_i + b_k) \frac{\partial L}{\partial z_i}
\]

\[
\frac{\partial L}{\partial z_i} = \frac{\partial}{\partial z_i} \text{Sigmoid}(z_i) \frac{\partial L}{\partial a_k}
\]

\[
\frac{\partial L}{\partial a_k} = (\frac{\partial}{\partial a_k} \sum_{i=0}^{n} w_{2i} a_i + b_2) \frac{\partial L}{\partial p_1}
\]

\[
\frac{\partial L}{\partial p_1} = \frac{\partial}{\partial p_1} \text{Sigmoid}(p_i) \frac{\partial L}{\partial \hat{y}_1}
\]

\[
\frac{\partial L}{\partial \hat{y}_1} = \frac{\partial}{\partial \hat{y}_1} L(y_1, \hat{y}_1)
\]

GradInputs

GradParams
Pytorch – Two-layer MLP + Regression

In [9]:

```python
import torch
import torch.nn as nn
import torch.autograd

network = nn.Sequential(
    nn.Linear(4, 4),
    nn.Sigmoid(),
    nn.Linear(4, 1),
    nn.Sigmoid()
)

batch_size = 16
input_vector = torch.autograd.Variable(torch.Tensor(batch_size, 4))
predictions = network(input_vector)
predictions.size()

print(predictions.size())

torch.Size([16, 1])
```

In [10]:

```python
criterion = nn.MSELoss()
loss = criterion(predictions, labels)
```
Pytorch – Two-layer MLP + LogSoftmax

In [16]:
import torch
import torch.nn as nn
import torch.autograd

network = nn.Sequential(
 nn.Linear(3072, 512),
 nn.Sigmoid(),
 nn.Linear(512, 10),
 nn.LogSoftmax()
)

batch_size = 16
input_vector = torch.autograd.Variable(torch.Tensor(batch_size, 3072))
predictions = network(input_vector)
print(predictions.size())
torch.Size([16, 10])

In [13]:
criterion = nn.NLLLoss()
loss = criterion(predictions, labels)
Pytorch – Two-layer MLP + LogSoftmax

In [17]:
```python
import torch
import torch.nn as nn
import torch.autograd

network = nn.Sequential(
    nn.Linear(3072, 512),
    nn.Sigmoid(),
    nn.Linear(512, 10),
)

batch_size = 16
input_vector = torch.autograd.Variable(torch.Tensor(batch_size, 3072))
predictions = network(input_vector)
print(predictions.size())
```

```
torch.Size([16, 10])
```

In [13]:
```python
criterion = nn.CrossEntropyLoss()
loss = criterion(predictions, labels)
```

LogSoftmax + Negative Likelihood Loss
PyTorch documentation

PyTorch is an optimized tensor library for deep learning using GPUs and CPUs.

Notes

- Autograd mechanics
- Broadcasting semantics
- CUDA semantics
- Extending PyTorch
- Multiprocessing best practices
- Serialization semantics

Package Reference

- torch
- torch.Tensor
- torch.sparse
- torch.Storage
- torch.nn
- torch.nn.functional
Re-initialize the classifier.
classifier = Classifier()

Let's define the loss function or criterion.
criterion = nn.NLLLoss()

Number of epochs is the number of times we go over the full training set.
num_epochs = 10

Learning rate.
learningRate = 0.005

This is often needed to prepare model for training.
classifier.train()

Short-cut for the model parameters.
weight = classifier.linear.weight;
bias = classifier.linear.bias;

Training loop starts.
for epoch in range(0, num_epochs):
 correct = 0
 cumloss = 0
 # Go over all the training data one batch at a time.
 for (i, (x, y)) in enumerate(trainLoader):
 # Flatten the images in the batch to input to the classifier.
 x = Variable(x.view(x.shape[0], 3 * 32 * 32))
 y = Variable(y)

 # Compute predictions under the current model.
 yhat = classifier(x)

 # Compute the loss with respect to this batch.
 loss = criterion(yhat, y)

 # Set to zero gradients computed in previous iteration.
 if weight.grad is not None:
 weight.grad.data.zero_()
 bias.grad.data.zero_()

 # Compute the gradients for the entire model variables,
 # this includes inputs, outputs, and parameters (weight, and bias).
 loss.backward()

 # Now we can update the weight and bias parameters.
 weight.data.add_(-learningRate * weight.grad.data)
 bias.data.add_(-learningRate * bias.grad.data)
Convolutional (Neural) Networks
Convolutional Layer

Input image * Weights → Output image

```
Input image:
4 5 7 6 6
3 2 8 0 7
6 7 7 1 5
3 0 1 1 1
4 3 2 1 7

Weights:
0 0 0 0
1 0 1
0 0 0

Output image:
11 2 15
13 8 12
```
Convolutional Layer
Convolutional Layer

Weights:

```
0 0 0
1 0 1
0 0 0
```

Input:

```
4 5 7
3 2 8
4 3 7
```

Output:

```
11 2 15
13 8 12
4
```
Convolutional Layer

Weights
Convolutional Layer (with 4 filters)

Input: 1x224x224

weights: 4x1x9x9

Output: 4x224x224

if zero padding, and stride = 1
Convolutional Layer (with 4 filters)

Input: 1x224x224

Output: 4x112x112

if zero padding, but stride = 2

weights: 4x1x9x9
Convolutional Layer in Torch

SpatialConvolution

```
module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH])
```

Input

```
nInputPlane (e.g. 3 for RGB inputs)
```

Output

```
nOutputPlane (equals the number of convolutional filters for this layer)
```
Convolutional Layer in Keras

\[\text{Convolution2D}(n\text{OutputPlane}, kW, kH, \text{input_shape} = (3, 224, 224), \text{subsample} = 2, \text{border_mode} = \text{valid}) \]
Convolutional Layer in pytorch

```
class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
```

- **in_channels** (e.g. 3 for RGB inputs)
- **out_channels** (equals the number of convolutional filters for this layer)
- **kernel_size**

Input

```
in_channels x kernel_size
```

Output

```
out_channels x kernel_size
```

- **out_channels** (equals the number of convolutional filters for this layer)
Convolutional Network: LeNet
LeNet in Pytorch

```python
# LeNet is French for The Network, and is taken from Yann Lecun's 98 paper
# on digit classification http://yann.lecun.com/exdb/lenet/
# This was also a network with just two convolutional layers.

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        # Convolutional layers.
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)

        # Linear layers.
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        out = F.relu(self.conv1(x))
        out = F.max_pool2d(out, 2)
        out = F.relu(self.conv2(out))
        out = F.max_pool2d(out, 2)

        # This flattens the output of the previous layer into a vector.
        out = out.view(out.size(0), -1)
        out = F.relu(self.fc1(out))
        out = F.relu(self.fc2(out))
        out = self.fc3(out)
        return out
```
SpatialMaxPooling Layer

take the max in this neighborhood
Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
Convolutional Layers as Matrix Multiplication

Pros?
Cons?

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
Questions?