One-Slide Summary

- g is in O(f) iff there exist positive constants c and n₀ such that g(n) ≤ cf(n) for all n ≥ n₀.
- If g is in O(f) we say that f is an upper bound for g.
- We use Omega Ω for lower bounds and Theta Θ for tight bounds.
- To prove that g is in O(f) you must find the constants c and n₀.
- We can add two numbers with electricity.

Outline

- Sorting: timing and costs
- Big Oh: upper bound
- Big Omega: lower bound
- Big Theta: tight bound
- Time Permitting:
- Adding Two Numbers With Electricity

Administriivia

- Don’t forget to turn in your fractal
 - Separate form and button on server
- Late policy for PS3 Code
 - about 10% per full day

Recall “simple sorting”: Find best card, take it out and set it aside, repeat.

Timing Sort

- What grows?
 - n = the number of elements in lst
- How much work are the pieces?
 find-best: work scales as n (increases by one)
 delete: work scales as n (increases by one)
- How many times does sort evaluate find-best and delete? n
- Total cost: scales as n²

```python
def find_best(things, better):
    if len(things) == 1: return things[0]
    rest = find_best(things[1:], better)
    return things[0] if better(things[0], rest) else rest

def sort(lst, cf):
    if not lst: return []
    best = find_best(lst, cf)
    lst.remove(best) # tricky!
    return [best] + sort(lst, cf)

def descending(x, y): return x > y

def time_sort(k):
    a = time.time()
    sort(range(k), descending)
    return time.time() - a
```

```bash
print sort(range(10), descending)
print time_sort(20)
print time_sort(40)
print time_sort(80)
print time_sort(160)
```

Cherry Blossom
by Ji Hyun Lee, Wei Wang

[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
0.00014
0.00057
0.00234
0.00960
0.00960
Timing Sort

 measured
times

\[= \frac{n^2}{500}\]

Timing Sort

Sorting Cost

\begin{align*}
\text{def } \text{sort} & (lst, cf): \# \text{ simple sort} \\
\text{if not lst: return } [] \\
\text{best} &= \text{find_best}(lst, cf) \\
\text{return } [\text{best}] + \text{sort}(\text{remove}(lst, best), cf) \\
\text{def } \text{find_best} & (things, better): \\
& \text{if len(things) == 1: return things[0]} \\
& \text{return } \text{pick_better}(better, \text{things[0]}, \\
& \text{find_best(things[1:], better)}
\end{align*}

If we double the length of the list, the amount of work approximately quadruples: there are twice as many applications of find-best, and each one takes twice as long.

Growth Notations

\begin{itemize}
\item \(g \in O(f)\) ("Big-Oh")

 \(g\) grows no faster than \(f\) (\(f\) is upper bound)

\item \(g \in \Theta(f)\) ("Theta")

 \(g\) grows as fast as \(f\) (\(f\) is tight bound)

\item \(g \in \Omega(f)\) ("Omega")

 \(g\) grows no slower than \(f\) (\(f\) is lower bound)
\end{itemize}

\text{Which one would we most like to know?}

\(\Omega\) ("Omega"): Lower Bound

\(g\) is in \(O(f)\) iff there are positive constants \(c\) and \(n_0\) such that \(g(n) \leq cf(n)\) for all \(n \geq n_0\).

\(g\) is in \(\Omega(f)\) iff there are positive constants \(c\) and \(n_0\) such that \(g(n) \geq cf(n)\) for all \(n \geq n_0\).

\(O\) Examples

\begin{itemize}
\item Is \(n\) in \(O(n^2)\)? Yes, \(c = 1\) and \(n_0 = 1\) works.
\item Is \(10n\) in \(O(n)\)? Yes, \(c = 10\) and \(n_0 = 1\) works.
\item Is \(n^2\) in \(O(n)\)? No, no matter what \(c\) we pick, \(cn^2 > n\) for big enough \(n\) (\(n > c\)).
\end{itemize}

Proof Techniques

\begin{itemize}
\item Theorem:

 There exists a polygon with four sides.

\item Proof:

 It is a polygon.
 It has four sides.
 QED.
\end{itemize}

\text{What kind of proof is this?}
Proof by Construction

• We can prove a “there exists an X with property Y” theorem, but showing an X that has property Y
• \(O(f)\) means “there are positive constants \(c\) and \(n_0\) such that \(g(n) \leq cf(n)\) for all \(n \geq n_0\)
• So, to prove \(g\) is in \(O(f)\) we need to find \(c\) and \(n_0\) and show that \(g(n) \leq cf(n)\) for all \(n \geq n_0\)

Dis-Proof by Construction

• To prove \(g\) is not in \(O(f)\):
• \(O(f)\) means: there are positive constants \(c\) and \(n_0\) such that \(g(n) \leq cf(n)\) for all \(n \geq n_0\)
• So, to prove \(g\) is not in \(O(f)\) we need to find a way given any \(c\) and \(n_0\), to find an \(n \geq n_0\) such that \(g(n) > cf(n)\).

Curious why \(\exists c \forall n_0 \exists n \quad P(c,n) \neq \forall c \forall n_0 \exists n \quad P(c,n)\)?
Take CS 2012 “Discrete Math!”

Growth Notations

• \(g \in O(f)\) (“Big-Oh”) \(g\) grows no faster than \(f\) (upper bound)
• \(g \in \Theta(f)\) (“Theta”) \(g\) grows as fast as \(f\) (tight bound)
• \(g \in \Omega(f)\) (“Omega”) \(g\) grows no slower than \(f\) (lower bound)

Liberal Arts Trivia: Archaeology

• In archaeology, \(this\) term is used to describe the exposure, processing and recording of archaeological remains. A related subconcept is stratification: relationships exist between different events in the same location or context. According to the Law of Superposition, sedimentary layers are deposited in a time sequence, with the oldest on the bottom and the youngest on top. The process for revealing them is \(this\).

Liberal Arts Trivia: Creative Writing

• This technique is one of the four rhetorical modes of discourse, along with argumentation, description and narration. Its purpose is to inform, explain, analyze or define. When done poorly, it is sometimes referred to as a “information dump” or “plot dump”.

The Sets \(O(f)\) and \(\Omega(f)\)

Functions that grow no faster than \(f\)
Increasingly fast growing functions
Functions that grow no slower than \(f\)
g is in $O(f)$ iff there are positive constants c and n_0 such that $g(n) \leq cf(n)$ for all $n \geq n_0$.

g is in $\Omega(f)$ iff there are positive constants c and n_0 such that $g(n) \geq cf(n)$ for all $n \geq n_0$.

Example

- Is n in $\Omega(n)$?
 - ?
- Is n^2 in $\Omega(n)$?
 - ?

g is $\Theta(f)$ iff g is in $O(f)$ and g is in $\Omega(f)$

g is in $O(f)$ iff there are positive constants c and n_0 such that $g(n) \leq cf(n)$ for all $n \geq n_0$.

g is in $\Omega(f)$ iff there are positive constants c and n_0 such that $g(n) \geq cf(n)$ for all $n \geq n_0$.

g is in $\Theta(f)$ iff there are positive constants c and n_0 such that $g(n) \geq cf(n)$ for all $n \geq n_0$.

The Sets $O(f)$, $\Omega(f)$, and $\Theta(f)$

- Is $10n$ in $\Theta(n)$?
- Is n^2 in $\Theta(n)$?
- Is n in $\Theta(n^2)$?

O and Ω Examples

- n is in $\Omega(n)$
 - Yes, pick $c = 1$
- $10n$ is in $\Omega(n)$
 - Yes, pick $c = 1$
- Is n^2 in $\Omega(n)$?
 - Yes! (pick $c = 1$)

O and Ω Examples

- n is in $O(n)$
 - Yes, pick $c = 1$
- $10n$ is in $O(n)$
 - Yes, pick $c = 10$
- Is n^2 in $O(n)$?
 - Pick $n > c$

Example

Is $10n$ in $\Theta(n)$?

g is $\Theta(f)$ iff

g is in $O(f)$ and g is in $\Omega(f)$

Θ (“Theta”): Tight Bound

g is $\Theta(f)$ iff

g is in $O(f)$ and g is in $\Omega(f)$

Θ Examples

- Is $10n$ in $\Theta(n)$?
- Is n^2 in $\Theta(n)$?
- Is n in $\Theta(n^2)$?
Θ Examples

- Is $10n$ in $\Theta(n)$?
 - Yes, since $10n$ is $\Omega(n)$ and $10n$ is in $O(n)$
 - Doesn’t matter that you choose different c values for each part; they are independent
- Is n^2 in $\Theta(n)$?
 - No, since n^2 is not in $O(n)$
- Is n in $\Theta(n^2)$?
 - No, since n^2 is not in $\Omega(n)$

Recall: Sorting Cost

- What grows?
 $n = \text{the number of elements in lst}$
- How much work are the pieces?
 - find-best: work scales as n (increases by one)
 - delete: work scales as n (increases by one)
- How many times does sort evaluate find-best and delete? n
- Total cost: scales as n^2

Timing Sort

The running time of this sort procedure is in $\Theta(n^2)$

Recall: Sorting Cost

- Is our sort good enough?
 Takes over 1 second to sort 1000-length list. How long would it take to sort 1 million items?
 $1s = \text{time to sort 1000}$
 $4s \sim \text{time to sort 2000}$
 $1M = 1000 \times 1000$
 Sorting time is n^2
 so, sorting 1000 times as many items will take 1000^2 times as long = 1 million seconds ~ 11 days
 Note: there are 800 Million VISA cards in circulation.
 It would take 20,000 years to process a VISA transaction at this rate.

Which of these is true?

- Our sort procedure is too slow for VISA because its running time is in $O(n^2)$
- Our sort procedure is too slow for VISA because its running time is in $\Omega(n^2)$
- Our sort procedure is too slow for VISA because its running time is in $\Theta(n^2)$
Which of these is true?

- Our sort procedure is too slow for VISA because its running time is in $\mathcal{O}(n^2)$
- Our sort procedure is too slow for VISA because its running time is in $\Omega(n^2)$
- Our sort procedure is too slow for VISA because its running time is in $\Theta(n^2)$

Knowing a running time is in $\mathcal{O}(f)$ tells you the running time is not worse than f. This can only be good news. It doesn’t tell you anything about how bad it is. (Lots of people and books get this wrong.)

Liberal Arts Trivia: Dance

- This four wall line dance was created in 1976 by American dancer Ric Silver. It was popularized by Marcia Griffiths and remains a perennial wedding favorite. Steps: 1-4 grapevine right (tap and clap on 4), 5-8 grapevine left (tap and clap on 8), 9-12 walk back (tap and clap on 12), etc. The lyrics include “I’ll teach you the …”

Liberal Arts Trivia: Popular Mechanics

- This part of a bicycle holds the front wheel and allows the rider to steer and balance the bicycle. It consists of two dropouts which hold the front wheel axle, two blades which join at the crown, and a steering tube to which the handlebars attach via a stem.

Liberal Arts Trivia: Medieval Studies

- This son of Pippin the Short was King of the Franks from 768 to his death and is known as the “father of Europe”: his empire united most of Western Europe for the first time since the Romans. His rule is associated with the Carolingian Renaissance, a revival of art, religion and culture. The word for kings in various Slavic languages (e.g., Russian, Plish, Czech) was coined after his name.

How To Add Two Numbers With Electricity

1

2

3

Magic?

Step 1. Pick a representation. We’ll use wires carrying electricity. Each wire will either be on or off. Each wire will thus encode one bit. We’ll represent our numbers in binary.

1

2

3

Magic?
How To Add Two Numbers With Electricity

Magic?

Step 1. Pick a representation.
We’ll use wires carrying electricity. Each wire will either be on or off. Each wire will thus encode one bit. We’ll represent our numbers in binary.

Still Adding Numbers

- **What does it mean for a wire to be “on”?**
 - We’ll use voltage.
 - Ex: bit 0 is 0V to 0.8V and bit 1 is 2V to 5V

- Great. So how do I combine and manipulate voltages?
 - Example: 0+0 = 0
 - Example: 0+1 = 1
 - Example: 1+0 = 1
 - Somehow I need the output to be “on” if either of the inputs is “on”. How do I do it?

The Transistor

- **A transistor** is a device used to amplify or switch electronic signals.

- A transistor used as a switch has three connections to the outside world:
 - source
 - control
 - output

- If the control is “on”, the source flows to the output. Otherwise, the output is “off”.
 - A transistor is like a faucet.

The Transistor Continued

- **A transistor** is made of a solid piece of semiconductor material.

- A semiconductor is a material that has electrical conductivity that varies dynamically between that of a conductor (on) or an insulator (off). Silicon is a semiconductor.

Exhaustive Listing:

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

What logical operation is this?

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]
Boolean Logic

- So we have \((X \text{ and } Y)\) and \((\text{not } X)\) for bits.
- Also \((X \text{ or } Y) = \text{not } ((\text{not } X) \text{ and } (\text{not } Y))\)
- Also \((X \text{ xor } Y) = (x \text{ or } y) \text{ and } (\text{not } (x \text{ and } y))\)
- An electronic circuit that operates on bits and implements basic boolean logic is called a gate.
- So far we have and, or, xor and not gates.
- That’s all we need to add numbers!

An electronic circuit that operates on bits and implements basic boolean logic is called a gate.
Adding Numbers!

- $1 + 0 + 1 = 10$

Electronic Computers

- By using **semiconductors**
 - which work using physical properties of silicon
- We can build **transistors**
 - which are like switches or faucets
- To manipulate electrical **voltages**
 - which represent bits
- Through logical **gates**
 - which encode and, or, not, etc.
- To add (and subtract, etc.) numbers!
 - In $O(1)$ time. This is the **basis** of our cost model.

Homework

- Read Course Book Chp 7
 - You've already done so!
- Udacity Unit 5
- Problem Set 3 Due
- Problem Set 4 Out
 - Start now!
 - Due Very Soon
 - It's for Exam Prep!