One-Slide Summary

- British codebreakers used **cribs** (guesses), brute force, and **analysis** to break the Lorenz cipher. Guessed wheel settings were likely to be correct if they resulted in a message with the right linguistic properties for German.
- If you've guessed the right wheel settings, two adjacent letters are more likely to be the same than they are to be different letters: **Double Deltas**.
- We can tell if two messages were encrypted using the same wheel settings (= same key) because the output letters will match when the input letters match. So we can try to “line them up” using **Banburismus** to look for matches.
- Tree sorting is only efficient if the trees are **balanced**. If not, it’s $\Theta(n^2)$. The best possible sorting is $\Theta(n \log n)$.

Outline

- WWII Codebreaking
- Double Deltas
- Machines
- Banburismus
- Tree Sorting
- Course Roadmap

Reverse Engineering Lorenz

- From the 2 intercepted messages, Col. John Tiltman worked on guessing cribs to find M1 and M2: 4000 letter messages, found 4000 letter key K1
- Bill Tutte (recent Chemistry graduate) given task of determining machine structure
 - Already knew it was 2 sets of 5 wheels and 2 wheels of unknown function
 - Six months later new machine structure likely to generate K1

Intercepting Traffic

- Set up listening post to intercept traffic from 12 Lorenz (Fish) links
 - Different links between conquered capitals
 - Slightly different coding procedures, and different configurations
- 600 people worked on intercepting traffic

Breaking WWII Traffic

- Knew machine structure, but a different initial configuration was used for each message
- Need to determine wheel setting:
 - Initial position of each of the 12 wheels
 - 1271 possible starting positions
 - Needed to try them fast enough to decrypt message while it was still strategically valuable

This is what you did for PS4 (except with fewer wheels)
Recognizing a Good Guess

- Intercepted Message (divided into 5 channels for each Baudot code bit)
 \[Z_c = z_0 z_1 z_2 z_3 z_4 z_5 z_6 z_7 \ldots \]
 \[z_{c,i} = m_{c,i} \oplus x_{c,i} \oplus s_{c,i} \]
- Message Key (parts from S-wheels and rest)
- Look for statistical properties
 - How many of the \(z_{c,i} \)'s are 0? \(\frac{1}{2} \) (not useful)
 - How many of \((z_{c,i+1} \oplus z_{c,i}) \) are 0? \(\frac{1}{2} \)

Actual Advantage

- Probability of repeating letters
 \[\text{Prob}[\Delta M_{1,i} \oplus \Delta M_{2,i} = 0] \approx 0.614 \]
 3.3% of German digraphs are repeating
- Probability of repeating S-keys
 \[\text{Prob}[\Delta S_{1,i} \oplus \Delta S_{2,i} = 0] \approx 0.73 \]

Using the Advantage

- If the guess of \(X \) is correct, should see higher than \(\frac{1}{2} \) of the double deltas are 0
- Try guessing different configurations to find highest number of 0 double deltas
- Problem:
 \[\text{# of double delta operations to try one config} \]
 \[= \text{length of } Z \times \text{length of } X \]
 \[= \text{for 10,000 letter message} = 12 M \text{ for each setting} \]
 \[* 7 \oplus \text{ per double delta} \]
 \[= 89 M \oplus \text{ operations} \]
 (that's a lot!)

Colossus

- Heath Robinson machines were too slow
- Colossus designed and first built in Jan 1944
- Replaced keytext tape loop with electronic keytext generator
- Speed up ciphertext tape:
 - 5,000 chars per second = 30 mph
 - Perform 5 double deltas simultaneously
 - Speedup = 2.5X for faster tape * 5X for parallelism
Colossus Design

- Electronic Keytext Generator
- Logic
- Tape Reader
- Counter
- Position Counter
- Printer

Impact on WWII

- 10 Colossus machines operated at Bletchley park
 - Various improvements in speed
- Decoded 63 million letters in Nazi command messages
- Learned German troop locations to plan D-Day (knew the deception was working)

Colossus History

- Kept secret after the war, all machines destroyed

Gender and WWII

- “By the end of the war, the Testery had grown to 9 cryptographers, 24 ATS girls [sic] with a total staff of 118, organised in 3 shifts working round the clock.”
 - ATS = “Auxiliary Territorial Service”, the women’s branch of the British Army during WWII
- Example: Helen Currie joined the Auxiliary Territorial Service (ATS) in 1938, training as an intercept operator in 1942. This led to her transfer to Bletchley Park, where she joined the Tunny-breaking section called the “Testery”. Initially her job was to translate punched paper tape into German by sight; later she operated a British copy of the German Tunny machine which produced the German plaintext automatically. After the war she entered local government and served as a magistrate.

How could the folks at Bletchley Park solve a problem ~ 1 quintillion times harder than ps4?
Motivation Helps...

Confronted with the prospect of defeat, the Allied cryptanalysts had worked night and day to penetrate German ciphers. It would appear that **fear was the main driving force**, and that adversity is one of the foundations of successful codebreaking.

Simon Singh, *The Code Book*

Liberal Arts Trivia: Maritime Law

- A letter of marque is an official government document authorizing an agent to search, seize, or destroy specified assets or personnel belonging to a foreign party beyond the borders of the nation ("marque" or frontier). They are usually used to authorize private parties to raid and capture merchant shipping of an enemy nation. In the past, a ship operating under a letter of marque and reprisal was privately owned and was called a "private man-of-war" or ... what?

Liberal Arts Trivia: Geography

- This capital city of Uttar Pradesh, the most populous state of India, is popularly known as the The City of Nawabs. It is also known as the Golden City of the East, Shiraz-i-Hind and The Constantinople of India. It is a center of Hindi and Urdu literature, and the birthplace of Kathak, a classic Indian dance form. The city was besieged during the Indian Rebellion of 1857.

Banburismus

Given two Enigma-encrypted messages, how can we determine if they were encrypted starting with the same wheel settings?

Enigma

- Invented commercially, 1923
- German Navy, Army, Air Force
- About 50,000 in use (many were captured by Allies)
- Modified throughout WWII, Germans believed perfectly secure
- Kahn’s *Codebreakers* (1967) didn’t know it was broken
- Turing’s 1940 Treatise on Enigma declassified in 1996

Reverse Engineering Enigma

“This fictional movie about a fictional U.S. submarine mission is followed by a mention in the end credits of those actual British missions. Oh, the British deciphered the Enigma code, too. Come to think of it, they pretty much did everything in real life that the Americans do in this movie.”

Roger Ebert’s review of U-571 (2000 Academy Award Winner)
Simple Substitution Ciphers

<table>
<thead>
<tr>
<th>encrypt</th>
<th>decrypt</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ</td>
<td>JIDKQACRSHLGWNFEXUZVTPMYOB</td>
</tr>
</tbody>
</table>

$HELLO \Rightarrow RQGGF$

Rotor Wheels

Simple substitution
Latch turns next rotor once per rotation

Language is Non-Random

- Random strings: the probability of two letters in the two messages matching is $1/26$ (number of letters in alphabet)
- Same-encrypted strings: the output letters will match when the input letters match
 - This happens much more frequently because some letters (e.g., “e” is ~13% of all English letters) are more common

Alan Turing’s Solution

M1: GXCYBGDSLWBDJLKWIPEHYGYQ2DTHRQXIKESQS
M2: YNSCFCCPVIPEMSIGIZFLHESCIYSPVRXMCQAXVXDVU
Banburismus

Trying Possible Alignments

Trying Possible Alignments
Trying Possible Alignments

Liberal Arts Trivia: Geology
• A stratovolcano or composite volcano is a tall, conical volcano made of many layers of lava, tephra and volcanic ash: they are characterized by steep sides and periodic eruptions. They are common in subduction zones where the ocean crust is drawn under the continental crust. Mount St. Helens and Mount Fuji are both stratovolcanos: name the country containing each one.

Liberal Arts Trivia: Philosophy
• This 18th century Prussian philosopher wrote on epistemology, as well as religion, law, and history. One of his most prominent works is the Critique of Pure Reason, an investigation into the limitations and structure of reason itself, encompassing an attack on traditional metaphysics and epistemology. He sought to create a compromise between empiricists and rationalists, claiming that the grand questions of speculative metaphysics cannot be answered by the human mind, but that the sciences are firmly grounded in laws of the mind.

Liberal Arts Trivia: Mythology
• In Egyptian mythology, this falcon-headed son of Isis and Osiris fought with Seth for the throne of Egypt. In the battle his eye was wounded and later healed by Isis; this became an important symbol for renewal. He united Egypt and bestowed divinity on the pharaohs (who were viewed as his living incarnations). Name this sun, sky and war god, shown here in hieroglyphs:

The Story So Far
def insert_one_tree(cf, new_elt, tree):
 if not tree:
 return make_tree([], new_elt, [])
 element_here = get_element(tree)
 if cf(new_elt, element_here):
 return make_tree(
 insert_one_tree(cf, new_elt, get_left(tree)),
 element_here, get_right(tree))
 else:
 return make_tree(
 get_left(tree), element_here,
 insert_one_tree(cf, new_elt, get_right(tree)))

The running time of insert-one-tree is in \(\Theta(\log n) \) where
\(n \) is the number of elements in the input tree, which
must be well-balanced.

def quicker_insert_one(cf, lst):
 if not lst: return []
 return insert_one_tree(cf, lst[0], quicker_insert_one(cf, lst[1:]))

No change (other than using insert_one_tree)…but evaluates to a tree not a list!

def extract_elements(tree):
 if tree == []: return []
 return extract_elements(get_left(tree)) +
 [get_element(tree)] +
 extract_elements(get_right(tree))

Growth of time to sort random list

What if tree is not well-balanced?

A pathologically unbalanced tree is as bad as a list!

Can we do better?

- Making all those trees is a lot of work
- Can we divide the problem in two halves, without making trees?

This is the famous "Quicksort" algorithm invented by Sir Tony Hoare. See Course Book.

There are lots of ways to do a little bit better, but no way to do asymptotically better. All possible sort procedure have running times in $\Omega(n \log n)$. (We'll explain why later in the course...)

Computer Science 1120 so far

- How to describe information processes by defining procedures
 - Programming with procedures, lists, recursion
 - Chapters 3, 4, 5
- How to predict properties about information processes
 - Predicting running time, Θ, O, Ω
- How to elegantly and efficiently implement information processes
 - Chapter 3 (rules of evaluation)
 - Chapter 6 (machines)

From Lecture 1:

The Liberal Arts

Trivium (3 roads) Quadrivium (4 roads)

Grammar Rhetoric Logic Arithmetic Music Geometry Astronomy

Liberal Arts Checkup

- Grammar: study of meaning in written expression
- Rhetoric: comprehension of verbal and written discourse
- Logic: argumentative discourse for discovering truth
- Arithmetic: understanding numbers
- Geometry: quantification of space
- Music: number in time
- Astronomy

CS1120 upcoming

- How to describe information processes by defining procedures
 - Programming with state, objects, networks
 - You will learn Java as well as Python
- How to predict properties about information processes
 - What is the fastest process that can solve a given problem?
 - Are there problems which can’t be solved by algorithms?
- How to elegantly and efficiently implement information processes
 - How to implement a Python interpreter

Liberal Arts Checkup

- Grammar: study of meaning in written expression
- Rhetoric: comprehension of verbal and written discourse
- Logic: argumentative discourse for discovering truth
- Arithmetic: understanding numbers
- Geometry: quantification of space
- Music: number in time
- Astronomy

Course Roadmap

Analysis

Synthesis

Ch 2: Language
Ch 3: Programming
Ch 4: Procedures
Ch 5: Data
Ch 6: Machine
Ch 7: Cost
Ch 8: Time
Ch 9: Sorting and Sequencing
PS 5, Ch 10: State
PS 6, Ch 11: Objects
Ch 12: Models
Ch 13: Computability
Ch 14: Tractability
PS 7, Ch 14: Meta-Language
PS 8, 9: Building Web Applications

You are here

CS1120 upcoming

- How to describe information processes by defining procedures
 - Programming with state, objects, networks
 - You will learn Java as well as Python
- How to predict properties about information processes
 - What is the fastest process that can solve a given problem?
 - Are there problems which can’t be solved by algorithms?
- How to elegantly and efficiently implement information processes
 - How to implement a Python interpreter

CS1120 upcoming

- How to describe information processes by defining procedures
 - Programming with state, objects, networks
 - You will learn Java as well as Python
- How to predict properties about information processes
 - What is the fastest process that can solve a given problem?
 - Are there problems which can’t be solved by algorithms?
- How to elegantly and efficiently implement information processes
 - How to implement a Python interpreter

Yes, listen to "Hey Jude!"

Read Neil deGrasse Tyson’s essay
Homework

• Exam 1 Out