Wei Hu Memorial Lecture

- I will give a completely optional bonus survey lecture: “A Recent History of PL in Context”
 - It will discuss what has been hot in various PL subareas in the last 20 years
 - This may help you get ideas for your class project or locate things that will help your real research
 - Put a tally mark on the sheet if you’d like to attend that day - I’ll pick a most popular day
- Likely Topics:

Proof Techniques
for Operational Semantics

Today’s Cunning Plan

- Why Bother?
- Mathematical Induction
- Well-Founded Induction
- Structural Induction
 - “Induction On The Structure Of The Derivation”

Why Bother?

- I am loathe to teach you anything that I think is a waste of your time.
- Thus I must convince you that inductive opsem proof techniques are useful.
 - Recall class goals: understand PL research techniques and apply them to your research
- This motivation should also highlight where you might use such techniques in your own research.

Homework

- Use wrw6y or mst3k (etc.) not weimer
- Tuesday ends at midnight local time
- Wednesday Office Hours → Thursday
- Do not waste too much time on HW!
- Let’s do small-step opsem for “++x” together

Never Underestimate

“Any counter-example posed by the Reviewers against this proof would be a useless gesture, no matter what technical data they have obtained. Structural Induction is now the ultimate proof technique in the universe. I suggest we use it.” --- Admiral Motti, A New Hope
Classic Example (Schema)

• “A well-typed program cannot go wrong.”
 - Robin Milner
• When you design a new type system, you must show that it is safe (= that the type system is sound with respect to the operational semantics).
• A Syntactic Approach to Type Soundness. Andrew K. Wright, Matthias Felleisen, 1992.
 - Type preservation: “if you have a well-typed program and apply an opsem rule, the result is well-typed.”
 - Progress: “a well-typed program will never get stuck in a state with no applicable opsem rules”
• Done for real languages: SML/NJ, SPARK ADA, Java
 - PL/I, plus basically every toy PL research language ever.

Classic Examples

• CCured Project (Berkeley)
 - A program that is instrumented with CCured run-time checks (= “adheres to the CCured type system”) will not segfault (= “the x86 opsem rules will never get stuck”).
• Vault Language (Microsoft Research)
 - A well-typed Vault program does not leak any tracked resources and invokes tracked APIs correctly (e.g., handles IRQs correctly in asynchronous Windows device drivers, cf. Capability Calculus)
• RC - Reference-Counted Regions For C (Intel Research)
 - A well-typed RC program gains the speed and convenience of region-based memory management but need never worry about freeing a region too early (run-time checks).
• Typed Assembly Language (Cornell)
 - Reasonable C programs (e.g., device drivers) can be translated to TALx86. Well-typed TALx86 programs are type- and memory-safe.
• Secure Information Flow (Many, e.g., Volpano et al. ‘96)
 - Lattice model of secure flow analysis is phrased as a type system, so type soundness = noninterference.

Recent Examples

• “The proof proceeds by rule induction over the target term producing translation rules.”
 - Chakravarty et al. '05
• “Type preservation can be proved by standard induction on the derivation of the evaluation relation.”
 - Hosoya et al. '05
• “Proof: By induction on the derivation of N ⊨ W.”
 - Sumi and Pierce '05
• Method: chose four POPL 2005 papers at random, the three above mentioned structural induction. (emphasis mine)

Induction

• Most important technique for studying the formal semantics of prog languages
 - If you want to perform or understand PL research, you must grok this!
• Mathematical Induction (simple)
• Well-Founded Induction (general)
• Structural Induction (widely used in PL)

Mathematical Induction

• Goal: prove ∀n ∈ N. P(n)

 - Base Case: prove P(0)

 - Inductive Step:
 - Prove ∀ n>0, P(n) ⇒ P(n+1)
 - “Pick arbitrary n, assume P(n), prove P(n+1)”

Why Does It Work?

• There are no infinite descending chains of natural numbers
• For any n, P(n) can be obtained by starting from the base case and applying n instances of the inductive step
Well-Founded Induction

- A relation \(p \subseteq A \times A \) is well-founded if there are no infinite descending chains in \(A \).
 - Example: \(< \subseteq \mathbb{N} \times \mathbb{N} \) where \(x < y \) if \(x \in \mathbb{N} \) and \(x < y \).
 - aka the predecessor relation
 - Example: \(< \subseteq \mathbb{N} \times \mathbb{N} \) where \(x < y \) if \(x, y \in \mathbb{N} \) and \(x < y \).

Well-founded induction:

- To prove \(\forall x \in A. \; P(x) \) it is enough to prove \(\forall x \in A. \left(\forall y \in A. \; P(y) \right) \Rightarrow P(x) \).
- If \(p \) is \(< \), then we obtain mathematical induction as a special case.

Structural Induction

- Recall \(e ::= n \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid x \).
- Define \(\subseteq \subseteq \mathbb{N} \times \mathbb{N} \) such that:
 - \(e_1 p e_2 \) if \(e_1 + e_2 \)
 - \(e_1 p e_2 \) if \(e_1 \cdot e_2 \)
 - no other elements of \(\mathbb{N} \times \mathbb{N} \) are related by \(p \).

To prove \(\forall e \in \mathbb{N}. \; P(e) \):

1. \(\vdash \forall n \in \mathbb{N}. \; P(n) \)
2. \(\vdash \forall x \in \mathbb{N}. \; P(x) \)
3. \(\vdash \forall e_1, e_2 \in \mathbb{N}. \; P(e_1) \land P(e_2) \Rightarrow P(e_1 + e_2) \)
4. \(\vdash \forall e_1, e_2 \in \mathbb{N}. \; P(e_1) \land P(e_2) \Rightarrow P(e_1 \cdot e_2) \)

Example of Induction on Structure of Expressions

- Let \(\vdash P(e) \), where \(L(e) \) be the # of literals and variable occurrences in \(e \)
- \(O(e) \) be the # of operators in \(e \).

To prove \(\forall e \in \mathbb{N}. \; L(e) = O(e) + 1 \):

1. \(\vdash \forall n \in \mathbb{N}. \; P(n) \)
2. \(\vdash \forall x \in \mathbb{N}. \; P(x) \)
3. \(\vdash \forall e_1, e_2 \in \mathbb{N}. \; P(e_1) \land P(e_2) \Rightarrow P(e_1 + e_2) \)
4. \(\vdash \forall e_1, e_2 \in \mathbb{N}. \; P(e_1) \land P(e_2) \Rightarrow P(e_1 \cdot e_2) \)

Notes on Structural Induction

- Called structural induction because the proof is guided by the structure of the expression.
- One proof case per form of expression.
 - Atomic expressions (with no subexpressions) are all base cases.
 - Composite expressions are the inductive case.
- This is the most useful form of induction in PL study.

Other Proofs by Structural Induction on Expressions

- Most proofs for \(\mathbb{N} \) language of IMP.
- Small-step and natural semantics obtain equivalent results:
 \(\forall e \in \mathbb{N}. \; e \rightarrow^* n \iff e \in \mathbb{N} \).

Structural induction on expressions works here because all of the semantics are syntax directed.

Stating The Obvious (With a Sense of Discovery)

- You are given a concrete state \(\sigma \).
- You have \(\vdash <x + 1, \sigma> \Downarrow 5 \).
- You also have \(\vdash <x + 1, \sigma> \Downarrow 88 \).
- Is this possible?
Why That Is Not Possible

• Prove that IMP is deterministic

\[\forall e \in Aexp. \forall \sigma \in \Sigma. \forall n, n' \in N. <e, \sigma> \Downarrow n \land <e, \sigma> \Downarrow n' \Rightarrow n = n' \]

\[\forall b \in Bexp. \forall \sigma \in \Sigma. \forall t, t' \in B. <b, \sigma> \Downarrow t \land <b, \sigma> \Downarrow t' \Rightarrow t = t' \]

• No immediate way to use mathematical induction

• For commands we cannot use induction on the structure of the command
 - while b's evaluation does not depend only on the evaluation of its strict subexpressions

Recall Opsem

• Operational semantics assigns meanings to programs by listing rules of inference that allow you to prove judgments by making derivations.

• A derivation is a tree-structured object made up of valid instances of inference rules.

We Need Something New

• Some more powerful form of induction ...

• With all the bells and whistles!

Induction on the Structure of Derivations

• Key idea: The hypothesis does not just assume a c \in Comm but the existence of a derivation of <c, \sigma> \Downarrow \sigma'

• Derivation trees are also defined inductively, just like expression trees

• A derivation is built of subderivations:

\[\text{while } x \leq 5 \text{ do } x := x + 1, \sigma \Downarrow \sigma' \]

New Notation

• Write \(D :: \text{Judgment} \) to mean “D is the derivation that proves Judgment”

Induction on Derivations

• To prove that for all derivations D of a judgment, property P holds

1. For each derivation rule of the form

\[H_1 \ldots H_n \Rightarrow C \]

2. Assume P holds for derivations of \(H_i (i = 1 \ldots n) \)

3. Prove the the property holds for the derivation obtained from the derivations of \(H_i \) using the given rule
Induction on Derivations (2)

- Prove that evaluation of commands is deterministic: \(<c, \sigma> \uparrow \sigma^* \Rightarrow \forall \sigma^* \in \Sigma: <c, \sigma> \uparrow \sigma \Rightarrow \sigma^* = \sigma''\)
- Pick arbitrary \(c, \sigma, \sigma'\) and \(D :: <c, \sigma> \uparrow \sigma^*\)
- To prove: \(\forall \sigma^* \in \Sigma: <c, \sigma> \uparrow \sigma \Rightarrow \sigma^* = \sigma''\)
- Case: last rule used in \(D\) was the one for skip
 - Pick arbitrary \(c\)
 - Prove that evaluation of commands is deterministic:
 - To prove:
 - \(D :: <c, \sigma> \uparrow \sigma^*\)
 - By induction hypothesis on \(D\)
 - This means that \(c = \text{skip}\), and \(\sigma^* = \sigma''\)
 - This is a base case in the induction.

Induction on Derivations (3)

- Case: the last rule used in \(D\) was the one for sequencing
 - Let’s do \(\text{if true}\) together!
 - Case: the last rule in \(D\) was \(\text{if true}\)
 - \(D ::<c_1, \sigma> \uparrow \sigma_1\), \(D_2 ::<c_2, \sigma> \uparrow \sigma_2\)
 - By induction hypothesis on \(D_1\) (with \(D_1'\)): \(\sigma_1 = \sigma_1''\)
 - Now \(D_1' ::<c_1, \sigma_1> \uparrow \sigma_1''\)
 - By induction hypothesis on \(D_2\) (with \(D_2'\)): \(\sigma_2'' = \sigma_2''\)
 - This is a simple inductive case

Induction on Derivations (4)

- Case: the last rule used in \(D\) was \(\text{while true}\)
 - \(D :: <\text{while b do c, } \sigma> \uparrow \sigma''\)
 - Pick arbitrary \(\sigma''\) such that \(D'' :: <\text{while b do c, } \sigma> \uparrow \sigma''\)
 - by inversion and determinism of boolean expressions, \(D''\) also uses the rule for \(\text{while true}\)
 - and has subderivations \(D''_1 :: <c, \sigma > \uparrow \sigma_1''\) and \(D''_2 :: <\text{while true, } \sigma_1''> \uparrow \sigma''\)
 - By induction hypothesis on \(D_2\) (with \(D_2''\)): \(\sigma_1 = \sigma_1''\)
 - Now \(D_2'' :: <\text{while b do c, } \sigma_1> \uparrow \sigma_1''\)
 - By induction hypothesis on \(D_1\) (with \(D_1''\)): \(\sigma'' = \sigma''\)

Induction on Derivations (5)

- Case: the last rule used in \(D\) was \(\text{if true}\)
 - \(D :: <\text{if b do c1 else c2, } \sigma> \uparrow \sigma''\)
 - Pick arbitrary \(\sigma''\) such that \(D'' :: <\text{if b do c1 else c2, } \sigma> \uparrow \sigma''\)
 - by inversion and determinism, \(D''\) also uses if true
 - And has subderivations \(D''_1 :: <b, \sigma > \uparrow \sigma_1''\) and \(D''_2 :: <\text{true, } \sigma_1''> \uparrow \sigma''\)
 - By induction hypothesis on \(D_2\) (with \(D_2''\)): \(\sigma'' = \sigma''\)

Induction on Derivations Summary

- If you must prove \(\forall x \in A. P(x) \Rightarrow Q(x)\)
 - with \(A\) inductively defined and \(P(x)\) rule-defined
 - we pick arbitrary \(x \in A\) and \(D :: P(x)\)
 - we could do induction on both facts
 - \(x \in A\) leads to induction on the structure of \(x\)
 - \(D :: P(x)\) leads to induction on the structure of \(D\)
 - Generally, the induction on the structure of the derivation is more powerful and a safer bet
- Sometimes there are many choices for induction
 - choosing the right one is a trial-and-error process
 - a bit of practice can help a lot

What Do You, The Viewers At Home, Think?

- Let’s do \(\text{if true}\) together!
- Case: the last rule in \(D\) was \(\text{if true}\)
 - \(D :: <\text{if b do c, } \sigma> \uparrow \sigma_1\), \(D_2 :: <c_1, \sigma> \uparrow \sigma_2\)
 - Try to do this on a piece of paper. In a few minutes I’ll have some lucky winners come on down.
Equivalence

- Two expressions (commands) are equivalent if they yield the same result from all states
 \[e_1 \approx e_2 \iff \forall \sigma \in \Sigma. \forall n \in \mathbb{N}. \langle e_1, \sigma \rangle \downarrow n \iff \langle e_2, \sigma \rangle \downarrow n \]

and for commands
 \[c_1 \approx c_2 \iff \forall \sigma, \sigma' \in \Sigma. \langle c_1, \sigma \rangle \downarrow \sigma' \iff \langle c_2, \sigma \rangle \downarrow \sigma' \]

Notes on Equivalence

- Equivalence is like logical validity
 - It must hold in all states (= all valuations)
 - $2 = 1 + 1$ is like "$2 = 1 + 1$ is valid"
 - $2 = 1 + x$ might or might not hold.
 - So, 2 is not equivalent to $1 + x$

- Equivalence (for IMP) is undecidable
 - If it were decidable we could solve the halting problem for IMP. How?

- Equivalence justifies code transformations
 - compiler optimizations
 - code instrumentation
 - abstract modeling

- Semantics is the basis for proving equivalence

Equivalence Examples

- `skip; c \approx c`
- `while b do c ≈ if b then c; while b do c else skip`
- `if e_1 \approx e_2` then `x := e_1 \approx x := e_2`
- `while true do c \approx while true do x := x + 1`
- `If c is while x ≠ y do if x ≥ y then x := x - y else y := y - x then (x := 221; y := 527; c) \approx (x := 17; y := 17)`

Potential Equivalence

- `(x := e_1; x := e_2) \approx x := e_2`
- Is this a valid equivalence?

Not An Equivalence

- `(x := e_1; x := e_2) \not\approx x := e_2`
- `lie. Chigau yo. Dame desu!`
- Not a valid equivalence for all `e_1, e_2`.
- Consider:
 - `(x := x+1; x := x+2) \approx x := x+2`
 - But for `n_1, n_2` it's fine:
 - `(x := n_1; x := n_2) \approx x := n_2`

Proving An Equivalence

- Prove that "`skip; c \approx c`" for all `c`
- Assume that `D :: <skip; c, \sigma> \Downarrow \sigma'`
- By inversion (twice) we have that
 \[D :: \langle \text{<skip, } \sigma \rangle \cup \sigma' \]
- Thus, we have `D_1 :: \langle \langle c, \sigma \rangle \Downarrow \sigma' \rangle`
- The other direction is similar
Proving An Inequivalence

• Prove that \(x := y \not\sim x := z \) when \(y \neq z \)

• It suffices to exhibit a \(\sigma \) in which the two commands yield different results

• Let \(\sigma(y) = 0 \) and \(\sigma(z) = 1 \)

• Then
 \[
 \langle x := y, \sigma \rangle \Downarrow \sigma[x := 0] \\
 \langle x := z, \sigma \rangle \Downarrow \sigma[x := 1]
 \]

Summary of Operational Semantics

• Precise specification of dynamic semantics
 - order of evaluation (or that it doesn't matter)
 - error conditions (sometimes implicitly, by rule applicability; "no applicable rule" = "get stuck")

• Simple and abstract (vs. implementations)
 - no low-level details such as stack and memory management, data layout, etc.

• Often not compositional (see while)

• Basis for many proofs about a language
 - Especially when combined with type systems!

• Basis for much reasoning about programs

• Point of reference for other semantics

Homework

• Homework 1 Due Today
• Homework 2 Due Thursday
 - No more homework overlaps.
• Read Winskel Chapter 5
 - Pay careful attention.
• Read Winskel Chapter 8
 - Summarize.