Brutus Is An Honorable Man

- HW2 will not be due today.
- Homework X+1 will never be due until after I have returned Homework X to you.
- Normally this is never an issue, but I was sick yesterday and was hosting a party so I didn’t get it done.

Introduction to Denotational Semantics

Class Likes/Dislikes Survey

- + humor/style = 5
- + readings = 2
- - 5pm class = 2
- - hand-waving proofs
- - proving for the sake of proving
- - not do reading ⇒ no penalty

Dueling Semantics

- Operational semantics is
 - simple
 - of many flavors (natural, small-step, more or less abstract)
 - not compositional
 - commonly used in the real (modern research) world

- Denotational semantics is
 - mathematical (the meaning of a syntactic expression is a mathematical object)
 - compositional

- Denotational semantics is also called: fixed-point semantics, mathematical semantics, Scott-Strachey semantics

Typical Student Reaction To Denotation Semantics

Denotational Semantics Learning Goals

- DS is compositional (!)
- When should I use DS?
- In DS, meaning is a “math object”
- DS uses ⊥ (“bottom”) to mean non-termination
- DS uses fixed points and domains to handle while
 - This is the tricky bit
DS In The Real World

- ADA was formally specified with it
- Handy when you want to study non-trivial models of computation
 - e.g., “actor event diagram scenarios”, process calculi
- Nice when you want to compare a program in Language 1 to a program in Language 2

Deno-Challenge

- You may skip homework assignment 3 or 4 if you can find a post-1999 paper in a first- or second-tier PL conference that uses denotational semantics and you write me a two paragraph summary of that paper.

Foreshadowing

- Denotational semantics assigns meanings to programs
- The meaning will be a mathematical object
 - A number \(a \in \mathbb{Z} \)
 - A boolean \(b \in \{\text{true}, \text{false}\} \)
 - A function \(c : \Sigma \rightarrow (\Sigma \cup \{\text{non-terminating}\}) \)
- The meaning will be determined compositionally
 - Denotation of a command is based on the denotations of its immediate sub-commands (= more than merely syntax-directed)

New Notation

- ‘Cause, why not?
 - \([\square]\) = “means” or “denotes”
- Example:
 - \([\text{foo}]\) = “denotation of foo”
 - \([3 < 5]\) = true
 - \([3 + 5]\) = 8
- Sometimes we write \(A[\cdot]\) for arith, \(B[\cdot]\) for boolean, \(C[\cdot]\) for command

Rough Idea of Denotational Semantics

- The meaning of an arithmetic expression \(e\) in state \(\sigma\) is a number \(n\)
- So, we try to define \(A[e]\) as a function that maps the current state to an integer:
 - \(A[\cdot] : \text{Aexp} \rightarrow (\Sigma \rightarrow \mathbb{Z})\)
- The meaning of boolean expressions is defined in a similar way
 - \(B[\cdot] : \text{Bexp} \rightarrow (\Sigma \rightarrow \{\text{true}, \text{false}\})\)
- All of these denotational function are total
 - Defined for all syntactic elements
 - For other languages it might be convenient to define the semantics only for well-typed elements
Denotational Semantics of Arithmetic Expressions

- We inductively define a function
 \[A : \text{Aexp} \rightarrow (\Sigma \rightarrow \mathbb{Z}) \]
 \[A[n] \sigma = \text{the integer denoted by literal } n \]
 \[A[x] \sigma = \sigma(x) \]
 \[A[e_1 + e_2] \sigma = A[e_1] \sigma + A[e_2] \sigma \]
 \[A[e_1 * e_2] \sigma = A[e_1] \sigma \cdot A[e_2] \sigma \]

- This is a total function (= defined for all expressions)

Denotational Semantics of Boolean Expressions

- We inductively define a function
 \[B : \text{Bexp} \rightarrow (\Sigma \rightarrow \{\text{true}, \text{false}\}) \]
 \[B[\text{true}] \sigma = \text{true} \]
 \[B[\text{false}] \sigma = \text{false} \]
 \[B[b_1 \land b_2] \sigma = B[b_1] \sigma \land B[b_2] \sigma \]
 \[B[e_1 = e_2] \sigma = \text{if } A[e_1] \sigma = A[e_2] \sigma \text{ then true else false} \]

Denotational Semantics of Commands

- Running a command \(c \) starting from a state \(\sigma \) yields another state \(\sigma' \)
- So, we try to define \(C[c] \) as a function that maps \(\sigma \) to \(\sigma' \)
 \[C[] : \text{Comm} \rightarrow (\Sigma \rightarrow \Sigma) \]

- Will this work? Bueller?

\(\bot = \text{Non-Termination} \)

- We introduce the special element \(\bot \) to denote a special resulting state that stands for non-termination
- For any set \(X \), we write \(X_\bot \) to denote \(X \cup \{\bot\} \)

Convention:
whenever \(f : X \rightarrow X_\bot \) we extend \(f \) to \(X_\bot \)
so that \(f(\bot) = \bot \)
- This is called strictness

Denotational Semantics of Commands

- We try:
 \[C[] : \text{Comm} \rightarrow (\Sigma \rightarrow \Sigma) \]
 \[C[\text{skip}] \sigma = \sigma \]
 \[C[x := e] \sigma = \sigma[x := A[e] \sigma] \]
 \[C[c_1; c_2] \sigma = C[c_2] (C[c_1] \sigma) \]
 \[C[\text{if } b \text{ then } c_1 \text{ else } c_2] \sigma = \]
 \[\text{if } B[b] \sigma \text{ then } C[c_1] \sigma \text{ else } C[c_2] \sigma \]
 \[C[\text{while } b \text{ do } c] \sigma = ? \]
Examples

- \(C[x:=2; x:=1] \sigma = \sigma[x := 1] \)
- \(C[\text{if true then } x:=2; x:=1 \text{ else }] \sigma = \sigma[x := 1] \)
- The semantics does not care about intermediate states (cf. "big-step")
- We haven't used \(\bot \) yet

Denotational Semantics of WHILE

- Notation: \(W = C[\text{while } b \text{ do } c] \)
- Idea: rely on the equivalence (from notes last time) \(\text{while } b \text{ do } c = \text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ else skip} \)
- Try \(W(\sigma) = \text{if } B[b] \sigma \text{ then } W(C[c])[\sigma] \text{ else } \sigma \)
- This is called the unwinding equation
- It is not a good denotation of \(W \) because:
 - It defines \(W \) in terms of itself
 - It is not evident that such a \(W \) exists
 - It does not describe \(W \) uniquely
 - It is not compositional

More on WHILE

- The unwinding equation does not specify \(W \) uniquely
- Take \(C[\text{while true do skip}] \)
- The unwinding equation reduces to \(W(\sigma) = W(\sigma) \), which is satisfied by every function!
- Take \(C[\text{while } x \neq 0 \text{ do } x := x - 2] \)
- The following solution satisfies equation (for any \(\sigma' \))
 \[
 W(\sigma) = \{ \begin{align*}
 \sigma' & \text{ if } \sigma(x) = 2k \land \sigma(x) \geq 0 \\
 \bot & \text{ otherwise}
 \end{align*}
 \]

Denotational Game Plan

- Since WHILE is recursive
 - always have something like: \(W(\sigma) = F(W(\sigma)) \)
- Admits many possible values for \(W(\sigma) \)
- We will order them
 - With respect to non-termination = "least"
 - And then find the least fixed point
- LFP \(W(\sigma) = F(W(\sigma)) \) == meaning of "while"

WHILE \(k \)-steps Semantics

- Define \(W_k : \Sigma \rightarrow \Sigma_\bot \) (for \(k \in \mathbb{N} \)) such that
 - \(W_k(\sigma) = \{ \sigma' \}
 \begin{cases}
 \bot & \text{if } \exists k. W_k(\sigma) = \sigma' \\
 \uparrow & \text{if } \sigma(x) = 2k \land \sigma(x) \geq 0 \\
 \sigma' & \text{if } \sigma(x) = 2k \land \sigma(x) \geq 0 \\
 \bot & \text{otherwise}
 \end{cases}
 \)
- We can define the \(W_k \) functions as follows:
 - \(W_0(\sigma) = \bot \)
 - \(W_k(\sigma) = \{ W_{k-1}(C[c])[\sigma] \}
 \begin{cases}
 \bot & \text{if } B[b][\sigma] \text{ for } k \geq 1 \\
 \sigma & \text{otherwise}
 \end{cases}
\)

WHILE Semantics

- How do we get \(W \) from \(W_k \)?
 - \(W(\sigma) = \{ \sigma' \}
 \begin{cases}
 \bot & \text{if } \exists k. W_k(\sigma) = \sigma' \\
 \uparrow & \text{otherwise}
 \end{cases}
 \)
- This is a valid compositional definition of \(W \)
 - Depends only on \(C[c] \) and \(B[b] \)
- Try the examples again:
 - For \(C[\text{while true do skip}] \)
 - \(W_k(\sigma) = \bot \) for all \(k \), thus \(W(\sigma) = \bot \)
 - For \(C[\text{while } x \neq 0 \text{ do } x := x - 2] \)
 - \(W(\sigma) = \{ \sigma[x := 0] \}
 \begin{cases}
 \bot & \text{if } \sigma(x) = 2n \land \sigma(x) \geq 0 \\
 \sigma & \text{otherwise}
 \end{cases}
\)

More on WHILE

• The solution is not quite satisfactory because
 - It has an operational flavor (= "run the loop")
 - It does not generalize easily to more complicated semantics (e.g., higher-order functions)
• However, precisely due to the operational flavor this solution is easy to prove sound w.r.t. operational semantics

That Wasn’t Good Enough!?

Simple Domain Theory

• Consider programs in an eager, deterministic language with one variable called "x"
 - All these restrictions are just to simplify the examples
• A state σ is just the value of x
 - Thus we can use \mathbb{Z} instead of Σ
• The semantics of a command give the value of final x as a function of input x
 \[C(\sigma) : \mathbb{Z} \rightarrow \mathbb{Z}_\perp \]

Examples - Revisited

• Take $C[\text{while true do skip}]$
 - Unwinding equation reduces to $W(x) = W(x)$
 - Any function satisfies the unwinding equation
 - Desired solution is $W(x) = \perp$
• Take $C[\text{while } x \neq 0 \text{ do } x := x^2]$
 - Unwinding equation: $W(x) = \text{if } x \neq 0 \text{ then } W(x^2) \text{ else } x$
 - Solutions (for all values $n, m \in \mathbb{Z}_\perp$):
 - $W(x) = \text{if } x \geq 0 \text{ then if } x \text{ even then } 0 \text{ else } n$
 - Solutions (for all values $n, m \in \mathbb{Z}_\perp$):
 - Desired solution: $W(x) = \text{if } x \geq 0 \land x \text{ even then } 0 \text{ else } \perp$

An Ordering of Solutions

• The desired solution is the one in which all the arbitrariness is replaced with non-termination
 - The arbitrary values in a solution are not uniquely determined by the semantics of the code
• We introduce an ordering of semantic functions
• Let $f, g \in \mathbb{Z} \rightarrow \mathbb{Z}_\perp$
• Define $f \sqsubseteq g$ as
 - $\forall x \in \mathbb{Z}, f(x) = \perp$ or $f(x) = g(x)$
 - A "smaller" function terminates at most as often, and when it terminates it produces the same result

Alternative Views of Function Ordering

• A semantic function $f \in \mathbb{Z} \rightarrow \mathbb{Z}_\perp$ can be written as $S_f \subseteq \mathbb{Z} \times \mathbb{Z}$ as follows:
 - set of "terminating" values for the function
• If $f \sqsubseteq g$ then
 - $S_f \subseteq S_g$ (and vice-versa)
 - We say that g refines f
 - We say that f approximates g
 - We say that g provides more information than f
The "Best" Solution

- Consider again \(C \) [while \(x \neq 0 \) do \(x := x - 2 \)]
 - Unwinding equation:
 \[
 W(x) = \begin{cases}
 0 & \text{if } x \neq 0 \text{ then } W(x - 2) \text{ else } x \\
 \bot & \text{if } x \neq 0 \text{ then } W(x - 2) \text{ else } \bot
 \end{cases}
 \]
- Not all solutions are comparable:
 - The grammar for \(C \) does not contain "while \(b \) do \(c \)"
 - We can find such a (recursive) context for any looping construct

Fixed-Point Equations

- The meaning of a context is a semantic functional
 \[
 F : (\mathbb{Z} \to \mathbb{Z}) \to (\mathbb{Z} \to \mathbb{Z}) \text{ such that}
 \]
 \[
 F(C[w]) = F[w]
 \]
- For "while": \(C = \begin{cases}
 c & \text{if } b \text{ then } c; \text{ else } \text{skip} \\
 \bot & \text{else } \bot
 \end{cases} \)
 - \(F \) depends only on \([c] \) and \([b] \)
- We can rewrite the unwinding equation for while
 - \(W(x) = \begin{cases}
 0 & \text{if } [b] \text{ then } W([c]) \text{ else } x \\
 \bot & \text{else } \bot
 \end{cases} \)
 - or, \(W = F \wedge \) (by function equality)
 - or, \(W \) is a least fixed point

Can We Solve This?

- Good news: the functions \(F \) that correspond to contexts in our language have least fixed points!
- The only way \(F \) diverges is by invoking it
- If any such invocation diverges, then \(F \) diverges!
- It turns out: \(F \) is monotonic, continuous
 - Not shown here!

New Notation: \(\lambda \)

- \(\lambda x. e \)
 - an anonymous function with body \(e \) taking argument \(x \)
- Example: \(\text{double}(x) = x+x \)
 \[
 \text{double} = \lambda x. x+x
 \]
- Example: \(\text{allFalse}(x) = \text{false} \)
 \[
 \text{allFalse} = \lambda x. \text{false}
 \]
- Example: \(\text{multiply}(x,y) = x\cdot y \)
 \[
 \text{multiply} = \lambda x. \lambda y. x\cdot y
 \]
The Fixed-Point Theorem

- If F is a semantic functional corresponding to a context in our language
 - F is monotonic and continuous (we assert)
 - For any fixed-point G of F and $k \in \mathbb{N}$
 \[F^k(\lambda x. \bot) \sqsubseteq G \]
 - The least of all fixed points is $\bigcup_k F^k(\lambda x. \bot)$

Proof (not detailed in the lecture):
1. By mathematical induction on k.
 - Base: $F^0(\lambda x. \bot) = \lambda x. \bot \sqsubseteq G$
 - Inductive: $F^{k+1}(\lambda x. \bot) = F(F^k(\lambda x. \bot)) \sqsubseteq F(G) = G$
2. Suffices to show that $\bigcup_k F^k(\lambda x. \bot)$ is a fixed-point
 \[F(\bigcup_k F^k(\lambda x. \bot)) = \bigcup_k F^{k+1}(\lambda x. \bot) = \bigcup_k F^k(\lambda x. \bot) \]

WHILE Semantics

- We can use the fixed-point theorem to write the denotational semantics of while:
 \[\text{while } b \text{ do } c \]
 \[= \bigcup_k F^k(\lambda x. \bot) \]
 where $F^0 = \lambda x. \bot$
- Example: $\text{while } \text{true } \text{do } \text{skip} = \lambda x. \bot$
- Example: $\text{while } x \neq 0 \text{ then } x := x - 1$

Discussion

- We can write the denotational semantics but we cannot always compute it.
 - Otherwise, we could decide the halting problem
 - H is halting for input 0 iff $H[0] \neq \bot$
- We have derived this for programs with one variable
 - Generalize to multiple variables, even to variables ranging over richer data types, even higher-order functions: domain theory

Recall: Learning Goals

- DS is compositional
- When should I use DS?
- In DS, meaning is a “math object”
- DS uses \bot (“bottom”) to mean non-termination
- DS uses fixed points and domains to handle while
 - This is the tricky bit

Can You Remember?

You just survived the hardest lecture in 615.
It’s all downhill from here.

Homework

- Homework 2 Due FRIDAY
- Homework 3 Out Today
 - Not as long as it looks - separated out every exercise sub-part for clarity.
 - Your denotational answers must be compositional (e.g., $W_n(m)$ or LFP)
- Read Winskel Chapter 6
- Read Hoare article
- Read Floyd article