MS Patch Tuesday - Plus ca change
• “eEye Digital Security has reported a vulnerability in Windows Media Player ... due to a boundary error within the processing of bitmap files (.bmp) and can be exploited to cause a heap-based buffer overflow via a specially crafted bitmap file that declares its size as 0 ... exploitation allows execution of arbitrary code”
• Six of seven “critical” or “important” bugs were found by people outside of Microsoft

Aprotim Memorial Reduction
• Claim: If I could solve the May-Alias problem, I could use it to solve an instance of the Halting problem.
• To solve: does foo() halt?
• Construct program Sanyal:
 - p = q + 1;
 - foo();
 - p = q;
• p May-Alias q in Sanyal iff foo() Halts.

Apologies to Ralph Macchio
• Daniel: You’re supposed to teach and I’m supposed to learn. Four homeworks I’ve been working on IMP, I haven’t learned a thing.
• Miyagi: You learn plenty.
• Daniel: I learn plenty, yeah, I learned how to analyze IMP, maybe. I evaluate your commands, derive your judgments, prove your soundness. I learn plenty!
• Miyagi: Not everything is as apparent.
• Daniel: You’re not even relatively complete! I’m going home, man.
• Miyagi: Daniel-san!
• Daniel: What?
• Miyagi: Come here. Show me “compute the VC”.

Homework
• Exciting, practical HW 5 out today
• If you’ve been skiving, now is a great time to try one out
• Easily applicable to other research
• Grad student town hall today at 6:15!

Abstract Interpretation (Non-Standard Semantics)
• a.k.a. “Picking The Right Abstraction”

The Problem
• It is extremely useful to predict program behavior statically (= without running the program)
 - For optimizing compilers, program analyses, software engineering tools, finding security flaws, etc.
• The semantics we studied so far give us the precise behavior of a program
• However, precise static predictions are impossible
 - The exact semantics is not computable
• We must settle for approximate, but correct, static analyses (e.g. VC vs. WP)
The Plan
• We will introduce abstract interpretation by example
• Starting with a miniscule language we will build up to a fairly realistic application
• Along the way we will see most of the ideas and difficulties that arise in a big class of applications

A Tiny Language
• Consider the following language of arithmetic (“shrIMP”?)
 \[e ::= n \mid e_1 \ast e_2 \]
• The denotational semantics of this language
 \[[n] = n \quad [e_1 \ast e_2] = [e_1] \times [e_2] \]
• We’ll take deno-sem as the “ground truth”
• For this language the precise semantics is computable (but in general it’s not)

An Abstraction
• Assume that we are interested not in the value of the expression, but only in its sign:
 - positive (+), negative (-), or zero (0)
• We can define an abstract semantics that computes only the sign of the result
 \[\sigma : \text{Exp} \rightarrow \{-, 0, +\} \]
 \[
 \begin{align*}
 \sigma(n) &= \text{sign}(n) \\
 \sigma(e_1 \ast e_2) &= \sigma(e_1) \otimes \sigma(e_2)
 \end{align*}
 \]

Correctness of Sign Abstraction
• We can show that the abstraction is correct in the sense that it predicts the sign
 \[[e] > 0 \iff \sigma(e) = + \]
 \[[e] = 0 \iff \sigma(e) = 0 \]
 \[[e] < 0 \iff \sigma(e) = - \]
• Our semantics is abstract but precise
• Proof is by structural induction on the expression e
 - Each case repeats similar reasoning

I Saw the Sign
• Why did we want to compute the sign of an expression?
 - One reason: no one will believe you know abstract interp if you haven’t seen the sign thing
• What could we be computing instead?
 - Alex Aiken was here ...

Another View of Soundness
• Link each concrete value to an abstract one:
 \[\beta : \mathbb{Z} \rightarrow \{-, 0, +\} \]
• This is called the abstraction function (\(\beta\))
 - This three-element set is the abstract domain
• Also define the concretization function (\(\gamma\)):
 \[
 \begin{align*}
 \gamma(+) &= \{ n \in \mathbb{Z} \mid n > 0 \} \\
 \gamma(0) &= \{ 0 \} \\
 \gamma(-) &= \{ n \in \mathbb{Z} \mid n < 0 \}
 \end{align*}
 \]
Another View of Soundness 2
• Soundness can be stated succinctly
 \[\forall e \in \text{Exp.} \quad [e] \in \gamma(\sigma(e)) \]
 (the real value of the expression is among the concrete values represented by the abstract value of the expression)
• Let C be the concrete domain (e.g. \(\mathbb{Z} \)) and A be the abstract domain (e.g. \([-\), \(0\), \(+]\))
• Commutative diagram:

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\downarrow & & \downarrow \\
C & \xrightarrow{\gamma} & \gamma(C)
\end{array}
\]

Another View of Soundness 3
• Consider the generic abstraction of an operator
 \[\sigma(e_1 \text{ op } e_2) = \sigma(e_1) \text{ op } \sigma(e_2) \]
• This is sound iff
 \[\forall a_1 \forall a_2 \quad \gamma(a_1 \text{ op } a_2) \supseteq \{ n_1 \text{ op } n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \]
• e.g. \(\gamma(a_1 \otimes a_2) \supseteq \{ n_1 \otimes n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \)
• This reduces the proof of correctness to one proof for each operator

Abstract Interpretation
• This is our first example of an abstract interpretation
• We carry out computation in an abstract domain
• The abstract semantics is a sound approximation of the standard semantics
• The concretization and abstraction functions establish the connection between the two domains

Adding Unary Minus and Addition
• We extend the language to
 \[e ::= n \mid e_1 \ast e_2 \mid - e \]
• We define \(\sigma(-e) = \ominus \circ \sigma(e) \)
• Now we add addition:
 \[e ::= n \mid e_1 \ast e_2 \mid - e \mid e_1 + e_2 \]
• We define \(\sigma(e_1 + e_2) = \sigma(e_1) \oplus \sigma(e_2) \)

Adding Addition
• The sign values are not closed under addition
• What should be the value of \(+ \oplus - \)?
• Start from the soundness condition:
 \[\gamma(+) \supseteq \{ n_1 + n_2 \mid n_1 > 0, n_2 < 0 \} = \mathbb{Z} \]
• We don’t have an abstract value whose concretization includes \(\mathbb{Z} \), so we add one:
 \(\top \) (“top” = “don’t know”)

Loss of Precision
• Abstract computation may lose information:
 \[[(1 + 2) + -3] = 0 \]
 but:
 \[\sigma((1+2) + -3) = (\sigma(1) \oplus \sigma(2)) \oplus \sigma(-3) = (\oplus \oplus +) \oplus - = \top \]
• We lost some precision
• But this will simplify the computation of the abstract answer in cases when the precise answer is not computable
Adding Division

- Straightforward except for division by 0
 - We say that there is no answer in that case
 - \(\gamma(+ \div 0) = \{ n \mid n = n_1 / 0, n_1 > 0 \} = \emptyset \)
- Introduce \(\bot \) to be the abstraction of the 0
 - We also use the same abstraction for non-termination!
 - \(\bot = "nothing" \)
 - \(\top = "something unknown" \)

Lattice Facts

- A lattice is complete when every subset has a lub and a glb
 - Even infinite subsets!
- Every finite lattice is (trivially) complete
- Every complete lattice is a complete partial order (recall: denotational semantics!)
 - Since a chain is a subset
- Not every CPO is a complete lattice
 - Might not even be a lattice

Lattice History

- Early work in denotational semantics used lattices (instead of what?)
 - But only chains need to have lubs
 - And there was no need for \(\top \) and glb
- In abstract interpretation we’ll use \(\top \) to denote “I don’t know”.
 - Corresponds to all values in the concrete domain

From One, Many

- We can start with the abstraction function \(\beta \)
 - \(\beta : C \to A \)
 - (maps a concrete value to the best abstract value)
 - A must be a lattice
- We can derive the concretization function \(\gamma \)
 - \(\gamma : A \to \mathcal{P}(C) \)
 - \(\gamma(a) = \{ x \in C \mid \beta(x) \leq a \} \)
- And the abstraction for sets \(\alpha \)
 - \(\alpha : \mathcal{P}(C) \to A \)
 - \(\alpha(S) = \text{lub}\{ \beta(x) \mid x \in S \} \)

Example

- Consider our sign lattice
 - \(\beta(n) = \begin{cases} + & \text{if } n > 0 \\ 0 & \text{if } n = 0 \\ - & \text{if } n < 0 \end{cases} \)
- \(\alpha(S) = \text{lub}\{ \beta(x) \mid x \in S \} \)
 - Example: \(\alpha([1, 2]) = \text{lub}\{ + \} = + \)
 - \(\alpha([1, 0]) = \text{lub}\{ +, 0 \} = \top \)
 - \(\alpha([]) = \text{lub}\{ \} = \bot \)
- \(\gamma(a) = \{ n \mid \beta(n) \leq a \} \)
 - Example: \(\gamma(+) = \{ n \mid \beta(n) \leq + \} = \{ n \mid n > 0 \} \)
 - \(\gamma(\top) = \{ n \mid \beta(n) \leq \top \} = \mathbb{Z} \)
 - \(\gamma(\bot) = \{ n \mid \beta(n) \leq \bot \} = \emptyset \)
Galois Connections

- We can show that
 - γ and α are monotonic (with \subseteq ordering on $\mathcal{P}(C)$)
 - $\alpha(\gamma(a)) = a$ for all $a \in A$
 - $\gamma(\alpha(S)) \supseteq S$ for all $S \in \mathcal{P}(C)$

- Such a pair of functions is called a Galois connection

 - Between the lattices A and $\mathcal{P}(C)$

Three Little Correctness Conditions

- Three conditions define a correct abstract interpretation
 1. α and γ are monotonic
 2. α and γ form a Galois connection
 - “α and γ are almost inverses”
 3. Abstraction of operations is correct
 $$a_1 \op a_2 = \alpha(\gamma(a_1) \op \gamma(a_2))$$

Correctness Condition

- In general, abstract interpretation satisfies the following (amazingly common) diagram

Homework

- Homework 4 Due Today
- Homework 5 Out Today
- Read Ken Thompson Turing Award
- Project Proposal Due On Tuesday