Abstract Interpretation
(Galois, Collections, Widening)

Tool Time
• How’s Homework 5 going?
• Get started early
• Compilation problems?
 - See FAQ
 (trivia: what tool brand is this?)

More Power!
• You can handle it!

Review
• We introduced abstract interpretation
• An abstraction mapping from concrete to abstract values
 - Has a concretization mapping which forms a Galois connection
• We’ll look a bit more at Galois connections
• We’ll lift AI from expressions to programs
• ... and we’ll discuss the mythic “widening”

Why Galois Connections?
• We have an abstract domain A
 - An abstraction function \(\beta : \mathbb{Z} \to A \)
 - Induces \(\alpha : \mathcal{P}(\mathbb{Z}) \to A \) and \(\gamma : A \to \mathcal{P}(\mathbb{Z}) \)
• We argued that for correctness
 \[\gamma(a_1 \text{ op } a_2) \supseteq \gamma(a_1) \text{ op } \gamma(a_2) \]
 - We wish for the set on the left to be as small as possible
 - To reduce the loss of information through abstraction
• For each set \(S \subseteq \mathbb{C} \), define \(\alpha(S) \) as follows:
 - Pick smallest \(S' \) that includes \(S \) and is in the image of \(\gamma \)
 - Define \(\alpha(S) = \gamma^{-1}(S') \)
 - Then we define: \(a_1 \text{ op } a_2 = \alpha(\gamma(a_1) \text{ op } \gamma(a_2)) \)
• Then \(\alpha \) and \(\gamma \) form a Galois connection

Galois Connections
• A Galois connection between complete lattices \(A \) and \(\mathcal{P}(\mathbb{C}) \) is a pair of functions \(\alpha \) and \(\gamma \) such that:
 - \(\gamma \) and \(\alpha \) are monotonic (with the \(\subseteq \) ordering on \(\mathcal{P}(\mathbb{C}) \))
 - \(\alpha(\gamma(a)) = a \) for all \(a \in A \)
 - \(\gamma(\alpha(S)) \supseteq S \) for all \(S \in \mathcal{P}(\mathbb{C}) \)
More on Galois Connections

- All Galois connections are monotonic
- In a Galois connection one function uniquely and absolutely determines the other

Abstract Interpretation for Imperative Programs

- So far we abstracted the value of expressions
- Now we want to abstract the state at each point in the program
- First we define the concrete semantics that we are abstracting
 - We’ll use a collecting semantics

Collecting Semantics

- Recall
 - A state $$\sigma \in \Sigma$$. Any state $$\sigma$$ has type $$\text{Var} \rightarrow \mathbb{Z}$$
 - States vary from program point to program point
- We introduce a set of program points: labels
- We want to answer questions like:
 - Is $$x$$ always positive at label $$i$$?
 - Is $$x$$ always greater or equal to $$y$$ at label $$j$$?
- To answer these questions we’ll construct $$C \in \text{Contexts}$$. $$C$$ has type $$\text{Labels} \rightarrow \mathcal{P}(\Sigma)$$
 - For each label $$i$$, $$C(i) =$$ all possible states at label $$i$$
 - This is called the collecting semantics of the program
 - This is basically what SLAM (and BLAST, ESP, …) approximate (using BDDs to store $$\mathcal{P}(\Sigma)$$ efficiently)

Defining the Collecting Semantics

- We first define relations between the collecting semantics at different labels
 - We do it for unstructured CFGs (cf. HW5!)
 - Can do it for IMP with careful notion of program points
- Define a label on each edge in the CFG
- For assignment

 $$\begin{array}{c}
 x := e \\
 \downarrow i \\
 \downarrow j
 \end{array}$$

 $$C_j = \{ \sigma \} \mid x := n \land [e] \sigma = n \}

- For conditionals

 $$\begin{array}{c}
 \text{false} \quad \text{true} \\
 \downarrow \text{else} \quad \downarrow \text{then}
 \end{array}$$

 $$C_{\text{else}} = \{ \sigma \mid \sigma \in C_{\text{in}} \land [b] \sigma = \text{false} \}
 C_{\text{then}} = \{ \sigma \mid \sigma \in C_{\text{in}} \land [b] \sigma = \text{true} \}

- Assumes $$b$$ has no side effects (as in IMP or HW5)

Defining the Collecting Semantics

- For a join

 $$\begin{array}{c}
 \downarrow \text{in} \\
 \downarrow \text{out}
 \end{array}$$

 $$C_{\text{out}} = C_i \cup C_j$$

- Verify that these relations are monotonic
 - If we increase a $$C_x$$ all other $$C_y$$ can only increase
Collecting Semantics: Example
• Assume $x \geq 0$ initially

C_1 = \{ \sigma \mid \sigma(x) \geq 0 \}

C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \}

C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \}

C_4 = \{ \sigma[y:=\sigma(y)\sigma(x)] \mid \sigma \in C_3 \}

C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}
Why Does This Work?

- We just made a system of recursive equations that are defined largely in terms of themselves.
 - e.g., $C_2 = F(C_4)$, $C_4 = G(C_2)$, $C_3 = H(C_2)$
- Why do we have any reason to believe that this will get us what we want?

The Collecting Semantics

- We have an equation with the unknown C
 - The equation is defined by a monotonic and continuous function on domain $\text{Labels} \to P(\Sigma)$
- We can use the least fixed-point theorem
 - Start with $C^0(\lambda L. \emptyset)$ (aka $C^0 = \lambda L. \emptyset$)
 - Apply the relations between C_i and C_j to get C_i from C_j
 - Stop when all $C^k = C^{k-1}$
- Problem: we’ll go on forever for most programs
- But we know the fixed point exists

Collecting Semantics: Example

- (assume $x \geq 0$ initially)
 - $y := 1$
 - $x := 0$
 - $y := y \ast x$
 - $x := x - 1$

<table>
<thead>
<tr>
<th>C_0</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>${ \sigma \mid \sigma(x) \geq 0 }$</td>
<td>${ \sigma \mid \sigma(y) \geq 0 }$</td>
<td>${ \sigma \mid \sigma(x) = 0 }$</td>
<td>${ \sigma \mid \sigma(y) = 0 }$</td>
<td></td>
</tr>
</tbody>
</table>

- $C_1 = \emptyset$
- $C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \}$
- $C_3 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}$
- $C_4 = \{ \sigma[y:=\sigma(y) \ast \sigma(x)] \mid \sigma \in C_3 \}$
Collecting Semantics: Example

- (assume $x \geq 0$ initially)

```
\(\begin{array}{c|c}
\text{Concrete:} & \text{Abstract:} \\
0 & 1 (x \geq 0) \\
\{x=0, y=1\} & \{x>0, y=1\} \\
y := y * x & y := y * x \\
x := x - 1 & x := x - 1
\end{array}\)
```

Collecting Semantics: Example

- (assume $x \geq 0$ initially)

```
\(\begin{array}{c|c}
\text{Concrete:} & \text{Abstract:} \\
0 & 1 (x \geq 0) \\
\{x=0, y=x+1\} & \{x>0, y=x+1\} \\
y := y * x & y := y * x \\
x := x - 1 & x := x - 1
\end{array}\)
```

Abstract Interpretation

- Conditional
 \[
 \text{Concrete: } C_j = \{ \sigma | \sigma \in C_i \land [b]\sigma = \text{false} \} \quad \text{and} \\
 C_k = \{ \sigma | \sigma \in C_i \land [b]\sigma = \text{true} \}
 \]

- Join
 \[
 \text{Concrete: } C_k = C_i \cup C_j \\
 \text{Abstract: } a_k = \alpha (\gamma(a_i) \cup \gamma(a_j)) = \text{lub} [a_i, a_j]
 \]

Least Fixed Points
In The Abstract Domain

- We have a recursive equation with unknown "a"
 - Defined by a monotonic and continuous function on the domain Labels \(\rightarrow A\)
 - We can use the least fixed-point theorem:
 - Start with \(a^0 = \lambda L.\) (aka: \(a^0(L) = \bot\))
 - Apply the monotonic function to compute \(a^{k+1}\) from \(a^k\)
 - Stop when \(a^{k+1} = a^k\)

- Exactly the same computation as for the collecting semantics
 - What is new?
 - "There is nothing new under the sun but there are lots of old things we don't know." — Ambrose Bierce
Least Fixed Points In The Abstract Domain

- We have a hope of termination!
- Classic setup: A has only uninteresting chains (finite number of elements in each chain)
 - A has finite height h ("finite-height lattice")
- The computation takes $O(h \times |\text{Labels}|^2)$ steps
 - At each step "a" makes progress on at least one label
 - We can only make progress h times
 - And each time we must compute $|\text{Labels}|$ elements
- This is a quadratic analysis: good news
 - This is exactly the same as Kildall’s 1973 analysis of dataflow’s polynomial termination given a finite-height lattice and monotonic transfer functions.

Abstract Interpretation: Example

- Consider the following program, $x > 0$

  ```
  y := 1
  x == 0
  y := y * x
  x := x - 1
  ```

We want to do the sign analysis on it.

Abstract Domain for Sign Analysis

- **Invent** the complete sign lattice $S = \{ \bot, -, 0, +, \top \}$
- Construct the complete lattice $A = \{x, y\} \rightarrow S$
 - With the usual point-wise ordering
 - Abstract state gives the sign for x and y
- We start with $a^0 = \lambda L. \lambda v \in \{x, y\}. \bot$
 - aka: $a^0(L, v) = \bot$

Let’s Do It!

<table>
<thead>
<tr>
<th>Label</th>
<th>Iterations \rightarrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x $+$</td>
</tr>
<tr>
<td></td>
<td>y T</td>
</tr>
<tr>
<td>2</td>
<td>x \bot $+$</td>
</tr>
<tr>
<td></td>
<td>y \bot $+$</td>
</tr>
<tr>
<td>3</td>
<td>x \bot $+$</td>
</tr>
<tr>
<td></td>
<td>y \bot $+$</td>
</tr>
<tr>
<td>4</td>
<td>x \bot $+$</td>
</tr>
<tr>
<td></td>
<td>y \bot $+$</td>
</tr>
<tr>
<td>5</td>
<td>x \bot 0</td>
</tr>
<tr>
<td></td>
<td>y $+$</td>
</tr>
</tbody>
</table>

Notes, Weaknesses, Solutions

- We abstracted the state of each variable independently

 $A = \{x, y\} \rightarrow \{\bot, -, 0, +, \top\}$
- We lost relationships between variables
 - E.g., at a point x and y may always have the same sign
 - In the previous abstraction we get $[x := T, y := T]$ at label 2 (when in fact y is always positive!)
- We can also abstract the state as a whole

 $A = \mathcal{P}(\{\bot, -, 0, +, \top\} \times \{\bot, -, 0, +, \top\})$

Other Abstract Domains

- Range analysis
 - Lattice of ranges: $R = \{\bot, [n..m], (-\infty, m], [n, +\infty), \top\}$
 - It is a complete lattice
 - $[n..m] \sqcup [n'..m] = [\min(n, n'), \max(m, m')]$
 - $[n..m] \sqcap [n'..m'] = [\max(n, n'), \min(m, m')]$
 - With appropriate care in dealing with ∞
 - $\beta : \mathbb{Z} \rightarrow R$ such that $\beta(n) = [n..n]$
 - $\alpha : \mathcal{P}(\mathbb{Z}) \rightarrow R$ such that $\alpha(S) = \sqcup \{[\beta(n) \mid n \in S]\} = [\min(S)\ldots\max(S)]$
 - $\gamma : R \rightarrow \mathcal{P}(\mathbb{Z})$ such that $\gamma(r) = \{n \mid n \in r\}$
- This lattice has infinite-height chains
 - So the abstract interpretation might not terminate!
Example of Non-Termination

- Consider this (common) program fragment

```
z := 1
z /\ n
z := z + 1
```

We want to do range analysis on it.

Example of Non-Termination

- Consider the sequence of abstract states at point 2
 - \([1..1], [1..2], [1..3], \ldots\)
 - The analysis never terminates
 - Or terminates very late if the loop bound is known statically

- It is time to approximate even more: widening
- We redefine the join (lub) operator of the lattice to ensure that from \([1..1]\) upon union with \([2..2]\) the result is \([1..+\infty]\) and not \([1..2]\)
- Now the sequence of states is
 - \([1..1], [1, +\infty], [1, +\infty] \ldots\)

Done (no more infinite chains)

Formal Definition of Widening

(Cousot 16.399 “Abstract Interpretation”, 2005)

- A widening \(\triangledown : (P \times P) \rightarrow P\) on a poset \((P, \sqsubseteq)\) satisfies:
 - \(\forall x, y \in P . \ x \sqsubseteq (x \triangledown y) \land y \sqsubseteq (y \triangledown y)\)
 - For all increasing chains \(x^0 \sqsubseteq x^1 \sqsubseteq \ldots\) the increasing chain \(y^0 \sqsubseteq y^1 \sqsubseteq \ldots\) is not strictly increasing.

- Two different main uses:
 - Approximate missing lubs. (Not for us.)
 - Convergence acceleration. (This is the real use.)
 - A widening operator can be used to effectively compute an upper approximation of the least fixpoint of \(F \in L\) starting from below when \(L\) is computer-representable but does not satisfy the ascending chain condition.

Formal Widening Example

- \([1,1] \triangledown [1,2] = [1, +\infty]\)

- Range Analysis on \(z\):
 - \(L_0: z := 1\)
 - \(L_1: \text{while } z < 99 \text{ do}\)
 - \(L_2: z := z + 1\)
 - \(L_3: \text{done } /* z \geq 99 */\)
 - \(L_4: y\)

\(L_i\) is the \(j\)th iterative attempt to compute an abstract value for \(z\) at label \(L_i\)

Recall \(S = [\min(S) .. \max(S)]\)

\(\triangledown\) is stable (fewer than 99 iterations!)

Other Abstract Domains

- Linear relationships between variables
 - A convex polyhedron is a subset of \(\mathbb{R}^d\) whose elements satisfy a number of inequalities:
 - \(a_1x_1 + a_2x_2 + \ldots + a_dx_d \geq c_i\)
 - This is a complete lattice; linear programming methods compute lubs

- Linear relationships with at most two variables
 - Convex polyhedra but with \(\leq 2\) variables per constraint
 - Octagons (\(x + y \geq c\)) have efficient algorithms

- Modulus constraints (e.g. even and odd)

Abstract Chatter

- AI, Dataflow and Software Model Checking
 - The big three (aside from flow-insensitive type systems) for program analyses
 - Are in fact quite related:
 - David Schmidt. Data flow analysis is model checking of abstract interpretation. POPL '98.

- AI is usually flow-sensitive (per-label answer)
 - AI can be path-sensitive (if your abstract domain includes \(\lor\), for example), which is just where model checking uses BDD's

- Metal, SLAM, ESP, … can all be viewed as AI
Abstract Interpretation

Conclusions

• AI is a very powerful technique that underlies a large number of program analyses
• AI can also be applied to functional and logic programming languages
• There are a few success stories
 - Strictness analysis for lazy functional languages
 - PolySpace for linear constraints
• In most other cases however AI is still slow
• When the lattices have infinite height and widening heuristics are used the result becomes unpredictable

Homework

• Project Proposal Due Today
• Read Pierce Article, pages 1-10 only
• Homework 5 Due Later

 (Assuming I finished with a few minutes left)
 You may stay as we run through some on-the-board examples.

On The Board Questions

• What is the VC for:

 for i = e_low to e_high do c done

• This axiomatic rule is unsound. Why?

\[
\begin{align*}
\vdash & \{ A \land p \}\ c_{\text{then}} \{ B_{\text{then}} \} \\
\vdash & \{ A \land \neg p \}\ c_{\text{else}} \{ B_{\text{else}} \} \\
\vdash & \{ A \} \text{ if } p \text{ then } c_{\text{then}} \text{ else } c_{\text{else}} \{ B_{\text{then}} \lor B_{\text{else}} \}
\end{align*}
\]