More Lambda Calculus and Intro to Type Systems

Plan

• Heavy Class Participation
 - Thus, wake up! (not actually kidding)
• Lambda Calculus
 - How is it related to real life?
 - Encodings
 - Fixed points
• Type Systems
 - Overview
 - Static, Dynamic
 - Safety, Judgments, Derivations, Soundness

The Reading

• Explain the Xavier Leroy article to me...

Lambda Review

• \(\lambda \)-calculus is a calculus of functions
 \[e ::= x \mid \lambda x. e \mid e_1 \, e_2 \]

• Several evaluation strategies exist based on \(\beta \)-reduction
 \[(\lambda x. e) \, e' \rightarrow_\beta [e'/x] \, e \]

• How does this simple calculus relate to real programming languages?

Functional Programming

• The \(\lambda \)-calculus is a prototypical functional language with:
 - no side effects
 - several evaluation strategies
 - lots of functions
 - nothing but functions (pure \(\lambda \)-calculus does not have any other data type)

• How can we program with functions?
• How can we program with only functions?

Programming With Functions

• Functional programming is a programming style that relies on lots of functions
• A typical functional paradigm is using functions as arguments or results of other functions
 - Called “higher-order programming”
• Some “impure” functional languages permit side-effects (e.g., Lisp, Scheme, ML, Python)
 - references (pointers), in-place update, arrays, exceptions
 - Others (and by “others” we mean “Haskell”) use monads to model state updates

The Reading

• How did he do register allocation?
Variables in Functional Languages

- We can introduce new variables:
 \[\text{let } x = e_1 \text{ in } e_2 \]
- \(x \) is bound by let
- \(x \) is statically scoped in (a subset of) \(e_2 \)
- This is pretty much like \((\lambda x. e_2) e_1 \)
- In a functional language, variables are never updated
 - they are just names for expressions or values
 - e.g., \(x \) is a name for the value denoted by \(e_1 \) in \(e_2 \)
- This models the meaning of “let” in math (proofs)

Referential Transparency

- In “pure” functional programs, we can reason equationally, by substitution
 - Called “referential transparency”
 \[\text{let } x = e_1 \text{ in } e_2 \iff [e_1/x]e_2 \]
- In an imperative language a side-effect in \(e_1 \) might invalidate the above equation
- The behavior of a function in a “pure” functional language depends only on the actual arguments
 - Just like a function in math
 - This makes it easier to understand and to reason about functional programs

How Tough Is Lambda?

- Given \(e_1 \) and \(e_2 \), how complex (a la CS theory) is it to determine if:
 \[e_1 \rightarrow \beta^* e \text{ and } e_2 \rightarrow \beta^* e \]

Expressiveness of \(\lambda \)-Calculus

- The \(\lambda \)-calculus is a minimal system but can express
 - data types (integers, booleans, lists, trees, etc.)
 - branching
 - recursion
 - This is enough to encode Turing machines
 - We say the lambda calculus is Turing-complete
 - Corollary: \(e_1 =_\beta e_2 \) is undecidable
 - Still, how do we encode all these constructs using only functions?
 - Idea: encode the “behavior” of values and not their structure

Encoding Booleans in \(\lambda \)-Calculus

- What can we do with a boolean?
 - we can make a binary choice (= “if” statement)
- A boolean is a function that, given two choices, selects one of them:
 - true = \(\lambda x. \lambda y. x \)
 - false = \(\lambda x. \lambda y. y \)
 - if \(E_1 \) then \(E_2 \) else \(E_3 \) = \(E_1 E_2 E_3 \)
- Example: “if true then \(u \) else \(v \)” is \((\lambda x. \lambda y. x) u \rightarrow^\beta (\lambda y. u) v \rightarrow^\beta u \)

More Boolean Encodings

- Let’s try to do boolean or together
- Recall:
 - true =_\beta \lambda x. \lambda y. x
 - false =_\beta \lambda x. \lambda y. y
 - if \(E_1 \) then \(E_2 \) else \(E_3 \) =_\beta E_1 E_2 E_3
- We want or to take in two booleans and yield a result that is a boolean
- How can we do this?
A Trying Ordeal

- Recall:
 - true = \(\lambda x. \lambda y. x \)
 - false = \(\lambda x. \lambda y. y \)
 - if \(E_1 \), then \(E_2 \) else \(E_3 \) = \(\lambda E_1. E_1 E_2 E_3 \)

- Intuition:
 - or \(a b \) = if \(a \) then true else \(b \)

- Either of these will work:
 - or = \(\lambda \lambda \lambda a. \lambda \lambda \lambda b. a \ true \ b \)
 - or = \(\lambda \lambda \lambda a. \lambda \lambda \lambda b. \lambda \lambda \lambda x. \lambda \lambda \lambda y. a \ x \ (b \ x \ y) \)

Final Boolean Encodings

- Think about how to do and and not
- Without peeking!

Another Demand

- How to do and and not
- and \(a b \) = if \(a \) then \(b \) else false
- and = \(\lambda a. \lambda b. a \ b \) false
- and = \(\lambda a. \lambda b. \lambda x. \lambda y. a \ (b \ x \ y) \) y

- not \(a \) = if \(a \) then false else true
- not = \(\lambda a. a \) false true
- not = \(\lambda a. \lambda x. \lambda y. a \ x \ y \)

Encoding Pairs in \(\lambda \)-Calculus

- What can we do with a pair?
 - we can access one of its elements (= “field access”)
 - A pair is a function that, given a boolean, returns the first or second element
 mkpair \(x y \) = \(\lambda b. b x y \)
 fst \(p \) = \(\lambda.p \ true \)
 snd \(p \) = \(\lambda.p \ false \)
 fst (mkpair \(x y \)) = \(\rightarrow p \) (mkpair \(x y \)) true
 \(\rightarrow p \) true \(x \) = \(\rightarrow p \) \(x \)

Encoding Numbers in \(\lambda \)-Calculus

- What can we do with a natural number?
 - What do you, the viewers at home, think?

- A natural number is a function that given an operation \(f \) and a starting value \(s \), applies \(f \) a number of times to \(s \):
 - 0 = \(\lambda f. \lambda s. s \)
 - 1 = \(\lambda f. \lambda s. f \ s \)
 - 2 = \(\lambda f. \lambda s. f \ (f \ s) \)
 - Very similar to List.fold_left and friends
- These are numerals in a unary representation
- Called Church numerals

Encoding Numbers \(\lambda \)-Calculus
Test Time!

• How would you encode the successor function \(\text{succ} \ x = x+1 \)?
• How would you encode more general addition?
• Recall: \(4 = \text{def} \lambda f. \lambda s. f f f (f s) \)

Computing with Natural Numbers

• The successor function
 \[\text{succ} \ n = \text{def} \lambda f. \lambda s. f (n f s) \]
 or
 \[\text{succ} \ n = \text{def} \lambda f. \lambda s. n f (f s) \]
• Addition
 \[\text{add} \ n_1 n_2 = \text{def} n_1 \text{succ} n_2 \]
• Multiplication
 \[\text{mult} n_1 n_2 = \text{def} n_1 (\text{add} n_2) 0 \]
• Testing equality with 0
 \[\text{iszero} n = \text{def} n (\lambda b. \text{false}) \text{true} \]
• Subtraction
 - Is not instructive, but makes a fun exercise …

Computation Example

• What is the result of the application \(\text{add} \ 0 \)?
 \[\lambda n_1. \lambda n_2. n_1 \text{succ} n_2 \ 0 \rightarrow \beta \]
 \[\lambda n_2. \text{succ} n_2 \]
 \[\lambda n_2. (\lambda f. \lambda s. s) \text{succ} n_2 \rightarrow \beta \]
 \[\lambda x. x \]
• By computing with functions we can express some optimizations
 - But we need to reduce under the lambda
 - Thus this “never” happens in practice

Encoding Recursion

• Given a predicate \(P \) encode the function “find” such that \(\text{find} P \ n \) is the smallest natural number which is larger than \(n \) and satisfies \(P \)
• \(\text{find} \) satisfies the equation
 \[\text{find} \ p \ n = \text{if} \ p \ n \ \text{then} \ n \ \text{else} \ \text{find} \ (\text{succ} \ n) \]
• Define
 \[F = \lambda f. \lambda p. \lambda n. (p \ n) \ (f \ (p \ (\text{succ} \ n))) \]
• We need a fixed point of \(F \)
 \[\text{find} = F \text{find} \]
 or
 \[\text{find} \ n = F \text{find} \ n \]

Toward Recursion

• Given a predicate \(P \), encode the function “find” such that “find \(P \ n \)” is the smallest natural number which is larger than \(n \) and satisfies \(P \)
• Claim: with find we can encode all recursion
 \[\text{Intuitively, why is this true?} \]

The Fixed-Point Combinator \(Y \)

• Let \(Y = \lambda F. (\lambda y. F(y y)) (\lambda x. F(x x)) \)
 - This is called the fixed-point combinator
 - Verify that \(Y F \) is a fixed point of \(F \)
 \[Y F \rightarrow \beta (\lambda y. F(y y)) (\lambda x. F(x x)) \rightarrow \beta F (Y F) \]
 or
 \[Y F = F (Y F) \]
• Given any function in \(\lambda \)-calculus we can compute its fixed-point (woot! why do we not win here?)
 - Thus we can define “find” as the fixed-point of the function \(F \) from the previous slide
 - Essence of recursion is the self-application “\(y \ y \)”
Expressiveness of Lambda Calculus

- Encodings are fun
 - Yes! Yes they are!
- But programming in pure \(\lambda \)-calculus is painful
- So we will add constants (0, 1, 2, ..., true, false, if-then-else, etc.)
- Next we will add types

Still Going!

- One minute break
- Stretch!

Types

- A program variable can assume a range of values during the execution of a program
- An upper bound of such a range is called a type of the variable
 - A variable of type “bool” is supposed to assume only boolean values
 - If \(x \) has type “bool” then the boolean expression “\(\text{not}(x) \)” has a sensible meaning during every run of the program

Typed and Untyped Languages

- Untyped languages
 - Do not restrict the range of values for a given variable
 - Operations might be applied to inappropriate arguments.
 - The behavior in such cases might be unspecified
 - The pure \(\lambda \)-calculus is an extreme case of an untyped language (however, its behavior is completely specified)
- (Statically) Typed languages
 - Variables are assigned (non-trivial) types
 - A type system keeps track of types
 - Types might or might not appear in the program itself
 - Languages can be explicitly typed or implicitly typed

The Purpose Of Types

- The foremost purpose of types is to prevent certain types of run-time execution errors
- Traditional trapped execution errors
 - Cause the computation to stop immediately
 - And are thus well-specified behavior
 - Usually enforced by hardware
 - e.g., Division by zero, floating point op with a NaN
 - e.g., Dereferencing the address 0 (on most systems)
- Untrapped execution errors
 - Behavior is unspecified (depends on the state of the machine = this is very bad!)
 - e.g., accessing past the end of an array
 - e.g., Jumping to an address in the data segment

Execution Errors

- A program is deemed safe if it does not cause untrapped errors
- Languages in which all programs are safe are safe languages
- For a given language we can designate a set of forbidden errors
 - A superset of the untrapped errors, usually including some trapped errors as well
 - e.g., null pointer dereference
- Modern Type System Powers:
 - prevent race conditions (e.g., Flanagan TLDI ’05)
 - prevent insecure information flow (e.g., Li POPL ’05)
 - prevent resource leaks (e.g., Vault, Weimer)
 - help with generic programming, probabilistic languages, ...
 - ... are often combined with dynamic analyses (e.g., CCured)
Preventing Forbidden Errors - Static Checking

- Forbidden errors can be caught by a combination of static and run-time checking
- Static checking
 - Detects errors early, before testing
 - Types provide the necessary static information for static checking
 - e.g., ML, Modula-3, Java
 - Detecting certain errors statically is undecidable in most languages

Preventing Forbidden Errors - Dynamic Checking

- Required when static checking is undecidable
 - e.g., array-bounds checking
- Run-time encodings of types are still used (e.g. Lisp)
- Should be limited since it delays the manifestation of errors
- Can be done in hardware (e.g. null-pointer)

Safe Languages

- There are typed languages that are not safe ("weakly typed languages")
- All safe languages use types (static or dynamic)

<table>
<thead>
<tr>
<th></th>
<th>Typed</th>
<th>Untyped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>ML, Java, Ada, C#, Haskell, ...</td>
<td>Lisp, Scheme, Ruby, Perl, Smalltalk, PHP, Python, ...</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td>λ-calculus</td>
</tr>
</tbody>
</table>

- We focus on statically typed languages

Why Typed Languages?

- Development
 - Type checking catches early many mistakes
 - Reduced debugging time
 - Typed signatures are a powerful basis for design
 - Typed signatures enable separate compilation
- Maintenance
 - Types act as checked specifications
 - Types can enforce abstraction
- Execution
 - Static checking reduces the need for dynamic checking
 - Safe languages are easier to analyze statically
 - the compiler can generate better code

Homework

- Read Cardelli article
- Read great works of literature
- Homework 5 Due In A Fortnight