Type Systems For: Exceptions, Continuations, and Recursive Types

Exceptions
- A mechanism that allows non-local control flow
 - Useful for implementing the propagation of errors to caller
- Exceptions ensure* that errors are not ignored
 - Compare with the manual error handling in C
- Languages with exceptions:
 - C++, ML, Modula-3, Java, C#, ...
- We assume that there is a special type \texttt{exn} of exceptions
 - \texttt{exn} could be int to model error codes
 - In Java or C++, \texttt{exn} is a special object type

Modeling Exceptions
- Syntax
 \[e ::= ... | \text{raise } e | \text{try } e_1 \text{ handle } x \Rightarrow e_2 \]
 \[\tau ::= ... | \text{exn} \]
- We ignore here how exception values are created
 - In examples we will use integers as exception values
- The handler binds \(x \) in \(e_2 \) to the actual exception value
- The “\text{raise}” expression never returns to the immediately enclosing context
 - \(1 + \text{raise } 2 \) is well-typed
 - if (\text{raise } 2) then 1 else 2 is also well-typed
 - (\text{raise } 2) 5 is also well-typed
 - What should be the type of \text{raise}?

Example with Exceptions
- A (strange) factorial function
 \[
 \text{let } f = \lambda x: \text{int.} \lambda res: \text{int.} \text{if } x = 0 \text{ then raise res else} f (x - 1) (res \times x) \in \text{try } f 5 1 \text{ handle } x \Rightarrow x
 \]
- The function returns in one step from the recursion
- The top-level handler catches the exception and turns it into a regular result

Typing Exceptions
- New typing rules
 \[
 \Gamma \vdash e : \text{exn} \quad \Gamma \vdash \text{raise } e : \tau
 \]
 \[
 \Gamma \vdash e_1 : \tau \quad \Gamma, x: \text{exn} \vdash e_2 : \tau
 \]
 \[
 \Gamma \vdash \text{try } e_1 \text{ handle } x \Rightarrow e_2 : \tau
 \]
- A raise expression has an arbitrary type
 - This is a clear sign that the expression does not return to its evaluation context
 - The type of the body of try and of the handler must match
 - Just like for conditionals

Dynamics of Exceptions
- The result of evaluation can be an uncaught exception
 - Evaluation answers:
 \[a ::= v | \text{uncaught } v \]
 - “uncaught \(v \)” has an arbitrary type
- Raising an exception has global effects
- It is convenient to use contextual semantics
 - Exceptions propagate through some contexts but not through others
 - We distinguish the handling contexts that intercept exceptions (this will be new)
Contexts for Exceptions

- **Contexts**
 - $H ::= \vdash | H e | v H | \text{raise } H | \text{try } H \ \text{handle } x \Rightarrow e$

- **Propagating contexts**
 - Contexts that propagate exceptions to their own enclosing contexts
 - $P ::= \vdash | P e | v P | \text{raise } P$

- **Decomposition theorem**
 - If e is not a value and e is well-typed then it can be decomposed in exactly one of the following ways:
 - $H[\lambda x: \tau. e] v$ (normal lambda calculus)
 - $H[\text{try } v \ \text{handle } x \Rightarrow e]$ (handle it or not)
 - $H[\text{try } P[\text{raise } v] \ \text{handle } x \Rightarrow e]$ (propagate!)
 - $P[\text{raise } v]$ (uncaught exception)

Contextual Semantics for Exceptions

- **Small-step reduction rules**
 - $H[\lambda x: \tau. e] v$ \rightarrow $H[v/x] e$
 - $H[\text{try } v \ \text{handle } x \Rightarrow e]$ \rightarrow $H[v]$
 - $H[\text{try } P[\text{raise } v] \ \text{handle } x \Rightarrow e]$ \rightarrow $H[v/x] e$
 - $P[\text{raise } v]$ \rightarrow uncaught v

- The handler is ignored if the body of try completes normally
- A raised exception propagates (in one step) to the closest enclosing handler or to the top of the program

Exceptional Commentary

- The addition of exceptions preserves type soundness
- Exceptions are like *non-local goto*
- However, they cannot be used to implement recursion
 - Thus we still cannot write (well-typed) non-terminating programs
- There are a number of ways to implement exceptions (e.g., “zero-cost” exceptions)

Some languages have a mechanism for taking a snapshot of the execution and storing it for later use
- Later the execution can be reinstated from the snapshot
- Useful for implementing threads, for example
- Examples: Scheme, LISP, ML, C (yes, really!)
- Consider the expression: $e_1 + e_2$ in a context C
 - How to express a snapshot of the execution right after evaluating e_1
 - But before evaluating e_2 and the rest of C?
 - Idea: as a context $C_{e_1} = C[_ + e_2]$
 - Alternatively, as $\lambda x. C[x + e_2]$
 - When we finish evaluating e_1 to v_1, we fill the context and continue with $C[v_1 + e_2]$
 - But the C_{e_1} continuation is still available and we can continue several times, with different replacements for e_1

Continuation Uses in “Real Life”

- You’re walking and come to a fork in the road
- You save a continuation “right” for going right
- But you go left (with the “right” continuation in hand)
- You encounter Bender. Bender coerces you into joining his computer dating service.
- You save a continuation “bad-date” for going on the date.
- You decide to invoke the “right” continuation
- So, you go right (no evil date obligation, but with the “bad-date” continuation in hand)
- A train hits you!
- On your last breath, you invoke the “bad-date” continuation

Continuations

- **Syntax**
 - $e ::= \text{callcc } k \ \text{in } e | \text{throw } e_1 e_2$
 - $\tau ::= _ | _ \tau$

- τ cont - the type of a continuation that expects a τ
- callcc k in e - sets k to the current context of the execution and then evaluates expression e
 - when e terminates, the whole callcc terminates
 - e can invoke the saved continuation (many times even)
 - when e invokes k it is as if “callcc k in e” returns
 - k is bound in e
 - throw $e_1 e_2$ - evaluates e_1 to a continuation, e_2 to a value and invokes the continuation with the value of e_2
 (just wait, we’ll explain it!)
Example with Continuations

- Example: another strange factorial

 callcc k in
 let f = \x:int.\res:int. if x = 0 then throw k res
 else f (x - 1) (x * res)
 in f 5 1

 • First we save the current context
 - This is the top-level context
 - A throw to k of value v means “pretend the whole callcc evaluates to v”
 • This simulates exceptions
 • Continuations are strictly more powerful than exceptions
 - The destination is not tied to the call stack

Static Semantics of Continuations

\[\Gamma, k : \tau \text{ cont } \vdash e : \tau \]
\[\Gamma \vdash \text{callcc } k \text{ in } e : \tau \]
\[\Gamma \vdash e_1 : \tau \text{ cont } \Gamma \vdash e_2 : \tau \]
\[\Gamma \vdash \text{throw } e_1 e_2 : \tau' \]

• Note that the result of callcc is of type \(\tau \)
 “callcc k in e” returns in two possible situations
 1. e throws to k a value of type \(\tau \), or
 2. e terminates normally with a value of type \(\tau \)
• Note that throw has any type \(\tau' \)
 - Since it never returns to its enclosing context

Dynamic Semantics of Continuations

• Use contextual semantics (wow, again!)
 - Contexts are now manipulated directly
 - Contexts are values of type \(\tau \text{ cont} \)
• Contexts
 \[H ::= \varepsilon | H e | v H | \text{throw } H_1 e_2 | \text{throw } v, H_2 \]
• Evaluation rules
 - \(H[(\lambda x.e) v] \rightarrow H[\lambda x.e] \)
 - \(H[\text{callcc } k \text{ in } e] \rightarrow H[\text{callcc } k \text{ in } e] \)
 - \(H[\text{throw } H_1 v_2] \rightarrow H[v_2] \)
 • callcc duplicates the current continuation
 • Note that throw abandons its own context

Implementing Coroutines with Continuations

• Example:

 let client = \k. let res = callcc k' in throw k k' in
 print (fst res); client (snd res)

 • “client k” will invoke “k” to get an integer and a continuation for
 obtaining more integers
 (for now, assume the list & recursion work)

 let getnext = \L. \k. if L = nil then raise 999
 else getnext (cdr L) (callcc k' in throw k (car L, k'))

 • “getnext L k” will send to “k” the first element of L along with a
 continuation that can be used to get more elements of L.

 getnext [0;1;2;3;4;5] (callcc k in client k)

Continuation Comments

• In our semantics the continuation saves the entire context: program counter, local variables, call
 stack, and the heap!
• In actual implementations the heap is not saved!
• Saving the stack is done with various tricks, but it is expensive in general
• Few languages implement continuations
 - Because their presence complicates the whole compiler considerably
 - Unless you use a continuation-passing-style of
 compilation (more on this next)

Continuation Passing Style

• A style of compilation where evaluation of a function never returns directly: instead the
 function is given a continuation to invoke with its result.
• Instead of
 \[\text{f(int a) \{} \text{return h(g(e));} \}\]
 we write
 \[\text{f(int a, cont k) \{} g(e, \lambda r. h(r, k))} \]\n• Advantages:
 - interesting compilation scheme (supports callcc easily)
 - no need for a stack, can have multiple return addresses
 (e.g., for an error case)
 - fast and safe (non-preemptive) multithreading
Continuation Passing Style

- Let $e ::= x \mid n \mid e_1 + e_2 \mid \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \mid \lambda x.e \mid e_1 e_2$
- Define $cps(e, k)$ as the code that computes e in CPS and passes the result to continuation k
 - $cps(x, k) = k x$
 - $cps(n, k) = k n$
 - $cps(e_1 + e_2, k) = cps(e_1, \lambda n_1. cps(e_2, \lambda n_2. k (n_1 + n_2)))$
 - $cps(\lambda x.e, k) = k (\lambda x. \lambda k'.cps(e, k'))$
 - $cps(e_1 e_2, k) = cps(e_1, \lambda f_1. cps(e_2, \lambda v_2. f_1 v_2 k))$
- Example: $cps(h(g(5)), k) = g(5, \lambda x. h x k)$
 - Notice the order of evaluation being explicit

Recursive Types: Lists

- We want to define recursive data structures
- Example: lists
 - A list of elements of type τ (a τ list) is either empty or it is a pair of a τ and a τ list
 - τ list $= \text{unit} + (\tau \times \tau$ list$)$
 - This is a recursive equation. We take its solution to be the smallest set of values L that satisfies the equation
 - $L = \{ \ast \} \cup (T \times L)$
 - Where T is the set of values of type τ
 - Another interpretation is that the recursive equation is taken up-to (modulo) set isomorphism

Recursive Types

- We introduce a recursive type constructor μ ("mu"):
 - $\mu t. \tau$
 - The type variable t is bound in τ
 - This stands for the solution to the equation $t \simeq \tau$ (i.e. t is isomorphic with τ)
 - Example: τ list $= \mu t. (\text{unit} + \tau \times t)$
 - This also allows "unnamed" recursive types
- We introduce syntactic (sugary) operations for the conversion between $\mu t. \tau$ and $[\mu t. \tau]/t$
 - e.g. between "τ list" and "unit + ($\tau \times \tau$ list)"
 - $e ::= \ldots \mid \text{fold}_{\mu t. \tau} e \mid \text{unfold}_{\mu t. \tau} e$
 - $\tau ::= \ldots \mid t \mid \mu t. \tau$

Type Rules for Recursive Types

- $\Gamma \vdash e : \mu t. \tau$
 - $\Gamma \vdash \text{unfold}_{\mu t. \tau} e : [\mu t. \tau]/t \tau$
 - $\Gamma \vdash e : [\mu t. \tau]/t \tau$
 - $\Gamma \vdash \text{fold}_{\mu t. \tau} e : \mu t. \tau$
- The typing rules are syntax directed
- Often, for syntactic simplicity, the fold and unfold operators are omitted
 - This makes type checking somewhat harder

Example with Recursive Types

- Lists
 - τ list $= \mu t. (\text{unit} + \tau \times t)$
 - $\text{nil}_\tau = \text{fold}_{\mu t. \tau} (\text{injl } \ast)$
 - $\text{cons}_\tau = \lambda x: \tau. \lambda L: \tau$ list. $\text{fold}_{\mu t. \tau} \text{injr} (x, L)$
 - A list length function
 - $\text{length}_\tau = \lambda L: \tau$ list. $\text{case } (\text{unfold}_{\mu t. \tau} L)\text{ of } \lambda \text{injl } x \Rightarrow 0\text{ } | \lambda \text{injr } y \Rightarrow 1 + \text{length}_\tau (\text{snd } y)$
 - (At home ...) Verify that
 - $\text{nil}_\tau :: \tau$ list
 - $\text{cons}_\tau :: \tau \rightarrow \tau$ list $\rightarrow \tau$ list
 - $\text{length}_\tau :: \tau$ list $\rightarrow \text{int}$

Dynamics of Recursive Types

- We add a new form of values
 - $v ::= \ldots \mid \text{fold}_{\mu t. \tau} v$
 - The purpose of fold is to ensure that the value has the recursive type and not its unfolding
- The evaluation rules:
 - $e \Downarrow v$ \quad $e \Downarrow \text{fold}_{\mu t. \tau} v$
 - The folding annotations are for type checking only
 - They can be dropped after type checking
Recursive Types in ML
- The language ML uses a simple syntactic trick to avoid having to write the explicit fold and unfold.
- In ML recursive types are bundled with union types:
 \[\text{type } t = C_1 \text{ of } \tau_1 \; | \; C_2 \text{ of } \tau_2 \; | \; \ldots \; | \; C_n \text{ of } \tau_n \] (* t can appear in \(\tau_i \))
 - e.g., "type intlist = Nil of unit | Cons of int * intlist"
- When the programmer writes \(\text{Cons } (5, l) \) - the compiler treats it as \(\text{fold}_{\text{intlist}} (\text{injlr } (5, l)) \)
- When the programmer writes
 - case \(e \) of Nil ⇒ … | Cons (h, t) ⇒ …
 the compiler treats it as
 - case unfold_{\text{intlist}} \(e \) of Nil ⇒ … | Cons (h,t) ⇒ …

Encoding Call-by-Value \(\lambda \)-calculus in \(F_1^\mu \)
- So far, \(F_1 \) was so weak that we could not encode non-terminating computations
 - Cannot encode recursion
 - Cannot write the \(\lambda x.x \) (self-application)
- The addition of recursive types makes typed \(\lambda \)-calculus as expressive as untyped \(\lambda \)-calculus!
- We could show a conversion algorithm from call-by-value untyped \(\lambda \)-calculus to call-by-value \(F_1^\mu \)

Untyped Programming in \(F_1^\mu \)
- We write \(e \) for the conversion of the term \(e \) to \(F_1^\mu \)
 - The type of \(e \) is \(V = \mu t. t \rightarrow t \)
- The conversion rules
 \[
 \begin{align*}
 x & \Rightarrow x \\
 \lambda x. e & \Rightarrow \text{fold}_\mu (\lambda x:V. e) \\
 e_1 e_2 & \Rightarrow (\text{unfold}_\mu e_1) e_2 \\
 \end{align*}
 \]
- Verify that
 1. \(\vdash e : V \)
 2. \(e \downarrow v \) if and only if \(e \downarrow^* v \)
- We can express non-terminating computation
 \[
 D = (\text{unfold}_\mu (\text{fold}_\mu (\lambda x:V. (\text{unfold}_\mu x) x))) (\text{fold}_\mu (\lambda x:V. (\text{unfold}_\mu x) x))
 \]
 or, equivalently
 \[
 D = (\lambda x:V. (\text{unfold}_\mu x) x) (\text{fold}_\mu (\lambda x:V. (\text{unfold}_\mu x) x))
 \]

Homework
- Read Goodenough article
 - Optional, perspectives on exceptions
- Work on Homework 5!
- Work on your projects!
 - Status Update Due Soon