Automated Theorem Proving
and Proof Checking

Engler: Automatically Generating Malicious Disks using Symex
- IEEE Security and Privacy 2006
- Use CIL and Symbolic Execution on Linux FS code
- Special model of memory, makes theorem prover calls, aims to hit all paths, has trouble with loops
 - New: transform program so that it combines concrete and symbolic execution (cf. RTCG)
 - New: uses contraint solver to automatically generate test case (= FS image)
- Found 5 bugs (4 panic, 1 root)
- Unrelated: please turn in those surveys!

Cunning Plan
- There are full-semester courses on automated deduction; we will elide details.
- Logic Syntax
- Theories
- Satisfiability Procedures
- Mixed Theories
- Theorem Proving
- Proof Checking
- SAT-based Theorem Provers (cf. Engler paper)

Motivation
- Can be viewed as “decidable AI”
 - Would be nice to have a procedure to automatically reason from premises to conclusions ...
- Used to rule out the exploration of infeasible paths (model checking, dataflow)
- Used to reason about the heap (McCarty, symbolic execution)
- Used to automatically synthesize programs from specifications (e.g. Leroy, Engler optional papers)
- Used to discover proofs of conjectures (e.g., Tarski conjecture proved by machine in 1996, efficient geometry theorem provers)
- Generally under-utilized

History
- Automated deduction is logical deduction performed by a machine
- Involves logic and mathematics
- One of the oldest and technically deepest fields of computer science
 - Some results are as much as 75 years old
 - “Checking a Large Routine”, Turing 1949
 - Automation efforts are about 40 years old
 - Floyd-Hoare axiomatic semantics
- Still experimental (even after 40 years)

Standard Architecture
Logic Grammar

- We’ll use the following logic:

 Goals:
 \[G ::= L \mid \text{true} \mid G_1 \land G_2 \mid H \Rightarrow G \mid \forall x. G \]

 Hypotheses:
 \[H ::= L \mid \text{true} \mid H_1 \land H_2 \]

 Literals:
 \[L ::= p(E_1, \ldots, E_k) \]

 Expressions:
 \[E ::= n \mid f(E_1, \ldots, E_m) \]

- This is a **subset of first-order logic**
 - Intentionally restricted: no \(\lor\) so far
 - Predicate functions \(p: <, =, \ldots\)
 - Expression functions \(f: +, *, \text{sel}, \text{upd}, =\)

Theorem Proving Problem

- Write an algorithm “prove” such that:

 - If \(\text{prove}(G) = \text{true}\) then \(\vdash G\)
 - **Soundness** (must have)

 - If \(\vdash G\) then \(\text{prove}(G) = \text{true}\)
 - **Completeness** (nice to have, optional)

 \(\text{prove}(H, G)\) means \(\text{prove } H \Rightarrow G\)

- **Architecture:** Separation of Concerns

 - #1. Handle \(\land, \Rightarrow, \forall\)

 - #2. Handle \(\cdot, *, \text{sel}, \text{upd}, =\)

Theorem Proving

- Want to **prove true things**
- Avoid proving false things
- We’ll do **proof-checking** later to rule out the “cat proof” shown here
- For now, let’s just get to the point where we can prove something

Basic Symbolic Theorem Prover

- Let’s define \(\text{prove}(H, G)\) ...

 \[\begin{align*}
 \text{prove}(H, \text{true}) &= \text{true} \\
 \text{prove}(H, G_1 \land G_2) &= \text{prove}(H, G_1) \&\& \text{prove}(H, G_2) \\
 \text{prove}(H, H_1 \Rightarrow G) &= \text{prove}(H, H_1 \land H_2, G) \\
 \text{prove}(H, \forall x. G) &= \text{prove}(H, G[a/x]) \\
 \text{prove}(H, L) &= ???
 \end{align*} \]

Theorem Prover for Literals

- We have **reduced the problem to** \(\text{prove}(H, L)\)
- But \(H\) is a **conjunction of literals** \(L_1 \land \ldots \land L_k\)
- Thus we really have to prove that \(L_1 \land \ldots \land L_k \Rightarrow L\)
- Equivalently, that \(L_1 \land \ldots \land L_k \land \neg L\) is **unsatisfiable**

 - For any assignment of values to variables the truth value of the conjunction is false
- Now we can say \(\text{prove}(H, L) = \text{Unsat}(H \land \neg L)\)

Theory Terminology

- A **theory** consists of a set of functions and predicate symbols (syntax) and definitions for the meanings of those symbols (semantics)

- Examples:

 - \(0, 1, -1, 2, -3, \ldots, +, -, =, <\) (usual meanings; “theory of integers with arithmetic” or “Presburger arithmetic”)

 - \(\equiv, \leq\) (axioms of transitivity, anti-symmetry, and \(\forall x. \forall y. x \leq y \lor y \leq x; “\text{“theory of total orders”}\))

 - \(\text{sel, upd}\) (McCarthy’s “theory of lists”)
Decision Procedures for Theories
- The Decision Problem
 - Decide whether a formula in a theory with first-order logic is true
- Example:
 - Decide "∀x. x>0 ⇒ (∃y. x=y+1)" in \{N, +, =, >\}
- A theory is **decidable** when there is an algorithm that solves the decision problem
 - This algorithm is the **decision procedure** for that theory

Satisfiability Procedures
- The Satisfiability Problem
 - Decide whether a conjunction of literals in the theory is satisfiable
 - Factors out the first-order logic part
 - The decision problem can be reduced to the satisfiability problem
 - Parameters for ∀, skolem functions for ∃, negate and convert to DNF (sorry; I won’t explain this here)
- “Easiest” Theory = Propositional Logic = SAT
 - A decision procedure for it is a “SAT solver”

Theory of Equality
- Theory of equality with uninterpreted functions
- Symbols: =, ≠, f, g, ...
- Axiomatically defined (A,B,C ∈ Expressions):
 - A=A
 - B=A
 - A=B
 - B=C
 - A=C
 - f(A) = f(B)
- Example satisfiability problem:
 - g(g(g(x)))=x ∧ g(g(g(g(g(x)))))=x ∧ g(x)≠x

More Satisfying Examples
- Theory of Linear Arithmetic
 - Symbols: ≥, =, +, -, integers
 - Example: y > 2x + 1, x > 1, y < 0 is unsat
 - Satisfiability problem is in P (loosely, no multiplication means no tricky encodings)
- Theory of Lists
 - Symbols: cons, head, tail, nil
 - Theorem: head(x) = head(y) ∧ tail(x) = tail(y) ⇒ x = y

Mixed Theories
- Often we have facts involving symbols from multiple theories
 - E’s symbols =, ≠, f, g, ... (uninterp function equality)
 - R’s symbols =, ≠, +, -, ≤, ≥, 0, 1, ... (linear arithmetic)
 - Running Example (and Fact):
 - \(x \leq y \land y+z \leq x \land 0 \leq z \Rightarrow f(f(x) - f(y)) = f(z) \)
 - To prove this, we must decide:
 - Unsat(x ≤ y, y + z ≤ x, 0 ≤ z, f(f(x) - f(y)) ≠ f(z))
- We may have a sat procedure for each theory
 - E’s sat procedure by Ackermann in 1924
 - R’s proc by Fourier
- The sat proc for their combination is much harder
 - Only in 1979 did we get E+R

Satisfiability of Mixed Theories
- Can we just separate out the terms in Theory 1 from the terms in Theory 2 and see if they are separately satisfiable?
 - No, unsound, equi-sat ≠ equivalent.
- The problem is that the two satisfying assignments may be incompatible
- Idea (Nelson and Oppen): Each sat proc announces all equalities between variables that it discovers
Handling Multiple Theories

- We’ll use cooperating decision procedures
- Each sat proc works on the literals it understands
- Sat procs share information (equalities)

Consider Equality and Arith

\[f(f(x) - f(y)) = f(z) \]

• How can we do this in our prover?

Nelson-Oppen: The E-DAG

- Represent all terms in one Equivalence DAG
 - Node names act as variables shared between theories!

\[f(f(x) - f(y)) \neq f(z) \land y \geq x \land x \geq y + z \land z \geq 0 \]

Nelson-Oppen: Processing

- Run each sat proc
 - Report all contradictions (as usual)
 - Report all equalities between nodes (key idea)

Implementation details: Use union-find to track node equivalence classes in E-DAG. When merging A=B, also merge f(A)=f(B).

Does It Work?

- If a contradiction is found, then unsat
 - This is sound if sat procs are sound
 - Because only sound equalities are ever found
- If there are no more equalities, then sat
 - Is this complete? Have they shared enough info?
 - Are the two satisfying assignments compatible?
 - Yes!
 - (Countable theories with infinite models admit isomorphic models, convex theories have necessary interpretations, etc.)
SAT-Based Theorem Provers

- Recall separation of concerns:
 - #1 Prover handles connectives (∀, ∧, ⇒)
 - #2 Sat procs handle literals (+, ≤, 0, head)
- Idea: reduce proof obligation into propositional logic, feed to SAT solver (CVC)
 - To Prove: 3*x=9 ⇒ (x = 7 ∧ x ≤ 4)
 - Becomes Prove: A ⇒ (B ∧ C)
 - Becomes Unsat: A ∧ ¬(B ∧ C)
 - Becomes Unsat: A ∧ (¬B ∨ ¬C)

SAT-Based Theorem Proving

- To Prove: 3*x=9 ⇒ (x = 7 ∧ x ≤ 4)
 - Becomes Unsat: A ∧ ¬(B ∨ ¬C)
 - SAT Solver Returns: A=1, C=0
 - Add constraint: ¬(A ∧ ¬C)
 - Becomes Unsat: A ∧ (¬B ∨ ¬C) ∧ ¬(A ∧ ¬C)
 - SAT Solver Returns: A=1, B=0, C=1
 - Ask sat proc: unsat(3*x=9, ¬x=7, x≤4) = true
 - (x=3 is a satisfying assignment)
 - We’re done! (original to-prove goal is false)
 - If SAT Solver returns “no satisfying assignment” then original to-prove goal is true

Proofs

“Checking proofs ain’t like dustin’ crops, boy!”

Proof Generation

- We want our theorem prover to emit proofs
 - No need to trust the prover
 - Can find bugs in the prover
 - Can be used for proof-carrying code
 - Can be used to extract invariants
 - Can be used to extract models (e.g., in SLAM)
- Implements the soundness argument
 - On every run, a soundness proof is constructed

Proof Representation

- Proofs are trees
 - Leaves are hypotheses/axioms
 - Internal nodes are inference rules
- Axiom: “true introduction”
 - Constant: true : pf
 - pf is the type of proofs
- Inference: “conjunction introduction”
 - Constant: and : pf → pf → pf
 - and : pf → pf → pf
- Problem:
 - “and true : pf” but does not represent a valid proof
 - Need a more powerful type system that checks content

Dependent Types

- Make pf a family of types indexed by formulas
 - f : Type (type of encodings of formulas)
 - e : Type (type of encodings of expressions)
 - pf : f → Type (the type of proofs indexed by formulas: it is a proof that f is true)
- Examples:
 - true : f
 - and : f → f → f
 - truei : pf true
 - andi : pf A → pf B → pf (and A B)
 - andi : [ΠA:f. ΠB:f. pf A → pf B → pf (and A B)]
Proof Checking

• Validate proof trees by type-checking them
• Given a proof tree X claiming to prove $A \land B$
• Must check $X : \text{pf} (\text{and } A \text{ B})$
• We use “expression tree equality”, so
 - andel (andi “1+2=3” “x=y”) does not have type $\text{pf} (3=3)$
 - This is already a proof system! If the proof-supplier wants to use the fact that $1+2=3 \iff 3=3$, she can include a proof of it somewhere!
• Thus Type Checking = Proof Checking
 - And it’s quite easily decidable! □

Parametric Judgment

• Universal Introduction Rule of Inference
 \[
 \vdash [a/x]A \quad (a \text{ is fresh})
 \vdash \forall y. \quad A
 \]
• We represent bound variables in the logic using bound variables in the meta-logic
 - all : $(e \to f) \to f$
 - Example: $\forall x. \ x=x$ represented as $(\text{all } (x \to \text{eq } x \ x))$
 - Note: $\forall y. \ y=y$ has an α-equivalent representation
 - Substitution is done by β-reduction in meta-logic
 • $[E/x](x=x)$ is $(\text{all } x \cdot \text{eq } x \ x) E$

Parametric \forall Proof Rules

\[
\begin{align*}
\vdash [a/x]A \quad (a \text{ is fresh}) \\
\vdash \forall y. \quad A
\end{align*}
\]
• Universal Introduction
 - alli: $\Pi A:(e \to f). (\Pi a:e. \text{pf} (A a)) \to \text{pf} (\text{all } A)$
 \[
 \vdash \forall y. \quad A
 \]
 - Universal Elimination
 - alle: $\Pi A:(e \to f). \Pi E:e. \text{pf} (A E) \to \text{pf} (\exists A)$

Parametric \exists Proof Rules

\[
\begin{align*}
\vdash [E/x]A \\
\vdash \exists x. \quad A
\end{align*}
\]
• Existential Introduction
 - existi: $\Pi A:(e \to f). \Pi E:e. \text{pf} (A E) \to \text{pf} (\text{exists } A)$
 \[
 \vdash [a/x]A
 \]
 - Existential Elimination
 - existe: $\Pi A:(e \to f). \Pi B:f. \text{pf} (\exists A) \to (\Pi a:e. \text{pf} (A a) \to \text{pf } B) \to \text{pf } B$

Homework

• Have a Happy Halloween!
• Project Due Nov 28
 - You have ~28 days to complete it.
 - Need help? Stop by my office or send email.