Introduction to Denotational Semantics

Class Likes/Dislikes Survey
- “would change [the bijection question] to be one that still tested students’ recollection of set theory but that didn’t take as much time”
- “I liked the bijection proof in the homework. I thought it ended up being pretty neat.”
- “my guess is the student would benefit more from a rephrasing or alternate explanation”
- “I don’t need to hear the things explained in another way”

Dueling Semantics
- Operational semantics is
 - simple
 - of many flavors (natural, small-step, more or less abstract)
 - not compositional
 - commonly used in the real (modern research) world
- Denotational semantics is
 - mathematical (the meaning of a syntactic expression is a mathematical object)
 - compositional
- Denotational semantics is also called: fixed-point semantics, mathematical semantics, Scott-Strachey semantics

Typical Student Reaction To Denotation Semantics

Denotational Semantics Learning Goals
- DS is compositional
- When should I use DS?
- In DS, meaning is a “math object”
- DS uses ⊥ (“bottom”) to mean non-termination
- DS uses fixed points and domains to handle while
 - This is the tricky bit

You’re On Jeopardy!
Alex Trebek: “The answer is this property of denotational semantics...”
DS In The Real World

- ADA was formally specified with it
- Handy when you want to study non-trivial models of computation
 - e.g., “actor event diagram scenarios”, process calculi
- Nice when you want to compare a program in Language 1 to a program in Language 2

Deno-Challenge

- You may skip the homework assignment of your choice if you can find a post-1995 paper in a first- or second-tier PL conference that uses denotational semantics.

Foreshadowing

- **Denotational semantics** assigns meanings to programs
- The meaning will be a mathematical object
 - A number $a \in \mathbb{Z}$
 - A boolean $b \in \{\text{true, false}\}$
 - A function $c : \Sigma \rightarrow (\Sigma \cup \{\text{non-terminating}\})$
- The meaning will be determined compositionally
 - Denotation of a command is based on the denotations of its immediate sub-commands (= syntax-directed)

New Notation

- ‘Cause, why not?
- /FLF092h A[·] /FLF08Bh = “means” or “denotes”
- Example:
 - /FLF092h foo /FLF08Bh = “denotation of foo”
 - /FLF092h 3 < 5 /FLF08Bh = true
 - /FLF092h 3 + 5 /FLF08Bh = 8
- Sometimes we write A[·] for arith, B[·] for boolean, C[·] for command

Rough Idea of Denotational Semantics

- The meaning of an arithmetic expression e in state σ is a number n
- So, we try to define $A[e]$ as a function that maps the current state to an integer:
 $$ A[\cdot] : \text{Aexp} \rightarrow (\Sigma \rightarrow \mathbb{Z}) $$
- The meaning of boolean expressions is defined in a similar way
 $$ B[\cdot] : \text{Bexp} \rightarrow (\Sigma \rightarrow \{\text{true, false}\}) $$
- All of these denotational function are **total**
 - Defined for all syntactic elements
 - For other languages it might be convenient to define the semantics only for well-typed elements

Denotational Semantics of Arithmetic Expressions

- We inductively define a function
 $$ A[\cdot] : \text{Aexp} \rightarrow (\Sigma \rightarrow \mathbb{Z}) $$
- $A[n] \sigma = \text{the integer denoted by literal n}$
- $A[x] \sigma = \sigma(x)$
- $A[e_1 + e_2] \sigma = A[e_1] \sigma + A[e_2] \sigma$
- $A[e_1 - e_2] \sigma = A[e_1] \sigma - A[e_2] \sigma$
- $A[e_1 * e_2] \sigma = A[e_1] \sigma * A[e_2] \sigma$
- This is a **total function** (= defined for all expressions)
Denotational Semantics of Boolean Expressions

- We inductively define a function $B[-] : Bexp \rightarrow (\Sigma \rightarrow \{true, false\})$

\[
\begin{align*}
B[true]_\sigma &= true \\
B[false]_\sigma &= false \\
B[b_1 \land b_2]_\sigma &= B[b_1]_\sigma \land B[b_2]_\sigma \\
B[e_1 = e_2]_\sigma &= \text{if } A[e_1]_\sigma = A[e_2]_\sigma \text{ then true else false}
\end{align*}
\]

Denotational Semantics for Commands

- Running a command c starting from a state σ yields another state σ'

So, we try to define $C[c] : \text{Comm} \rightarrow (\Sigma \rightarrow \Sigma)$

\[
\begin{align*}
C[skip]_\sigma &= \sigma \\
C[x := e]_\sigma &= \sigma[x := A[e]_\sigma] \\
C[c_1; c_2]_\sigma &= C[c_2] (C[c_1]_\sigma) \\
C[if \ b \ then \ c_1 \ else \ c_2]_\sigma &= \text{if } B[b]_\sigma \text{ then } C[c_1]_\sigma \text{ else } C[c_2]_\sigma \\
C[while \ b \ do \ c]_\sigma &= ?
\end{align*}
\]

Examples

- $C[x:=2; x:=1]_\sigma = \sigma[x := 1]$
- $C[if \ true \ then \ x:=2; x:=1 \ else \ldots]_\sigma = \sigma[x := 1]$

The semantics does not care about intermediate states

- We haven’t used \bot yet
Denotational Semantics of WHILE

- Notation: $W = C[\text{while } b \text{ do } c]$
- Idea: rely on the equivalence (from last time)
 \hspace{1cm} while b do c \iff b then c; while b do c else skip
- Try
 $$W(\sigma) = \begin{cases}
 \sigma & \text{if } B[b]\sigma \text{ then } W(C[c] \sigma) \text{ else } \sigma
 \end{cases}$$
- This is called the unwinding equation
- It is not a good denotation of W because:
 - It defines W in terms of itself
 - It is not evident that such a W exists
 - It does not describe W uniquely
 - It is not composable

Denotational Game Plan

- Since WHILE is recursive
 \hspace{1cm} always have something like: $W(\sigma) = F(W(\sigma))$
- Admits many possible values for $W(\sigma)$
- We will order them
 \hspace{1cm} With respect to non-termination
- And then find the least fixed point
- LFP $W(\sigma) = F(W(\sigma))$ \iff meaning of “while”

WHILE Semantics

- How do we get W from W_k?
 $$W(\sigma) = \begin{cases}
 \sigma' & \text{if } \exists k. W_k(\sigma) = \sigma' \neq \perp
 \perp & \text{otherwise}
 \end{cases}$$
- This is a valid compositional definition of W
 \hspace{1cm} depends only on $C[c]$ and $B[b]$
- Try the examples again:
 \hspace{1cm} For $C[\text{while true do skip}]$, $W(\sigma) = \perp$
 \hspace{1cm} For $C[\text{while } x \neq 0 \text{ do } x := x - 2]$, $W(\sigma) = \perp$
- $W(\sigma) = \begin{cases}
 \sigma[x := 0] & \text{if } \sigma(x) = 2k \land \sigma(x) \geq 0
 \perp & \text{otherwise}
 \end{cases}$

More on WHILE

- The unwinding equation does not specify W uniquely
- Take $C[\text{while true do skip}]$
- The unwinding equation reduces to $W(\sigma) = W(\sigma)$, which is satisfied by every function!
- Take $C[\text{while } x \neq 0 \text{ do } x := x - 2]$
- The following solution satisfies equation (for any σ')
 $$W'(\sigma) = \begin{cases}
 \sigma' & \text{if } B[b]\sigma \iff 2k \land \sigma(c) \geq 0
 \perp & \text{otherwise}
 \end{cases}$$

WHILE Semantics

- Define $W_k : \Sigma \rightarrow \Sigma_\perp$ (for $k \in \mathbb{N}$) such that
 $$W_k(\sigma) = \begin{cases}
 \sigma' & \text{if } "\text{while } b \text{ do } c" \text{ in state } \sigma \text{ terminates in fewer than } k \text{ iterations in state } \sigma'
 \perp & \text{otherwise}
 \end{cases}$$
- We can define the W_k functions as follows:
 $$W_0(\sigma) = \perp$$
 $$W_k(\sigma) = \begin{cases}
 W_{k-1}(C[c] \sigma) & \text{if } B[b]\sigma \text{ for } k \geq 1
 \perp & \text{otherwise}
 \end{cases}$$

More on WHILE

- The solution is not quite satisfactory because
 \hspace{1cm} It has an operational flavor
 \hspace{1cm} It does not generalize easily to more complicated semantics (e.g., higher-order functions)
- However, precisely due to the operational flavor this solution is easy to prove sound w.r.t operational semantics
That Wasn’t Good Enough!?

Simple Domain Theory
• Consider programs in an eager, deterministic language with one variable called "x"
 - All these restrictions are just to simplify the examples
• A state σ is just the value of x
 - Thus we can use \mathbb{Z} instead of Σ
• The semantics of a command give the value of final x as a function of input x $C \vdash c : \mathbb{Z} \to \mathbb{Z}$

Examples - Revisited
• Take $C[\text{while true do skip}]$
 - Unwinding equation reduces to $W(x) = W(x)$
 - Any function satisfies the unwinding equation
 - Desired solution is $W(x) = \perp$
• Take $C[\text{while } x \neq 0 \text{ do } x := x - 2]$
 - Unwinding equation:
 $W(x) = \begin{cases}
 W(x) & \text{if } x \geq 0 \\
 \text{if } x \text{ even then } n \text{ else } m
 \end{cases}$
 - Solutions (for all values $n, m \in \mathbb{Z}_\perp$):
 $W(x) = \begin{cases}
 \text{if } x \geq 0 \text{ and } x \text{ even then } 0 \text{ else } \perp
 \end{cases}$
 - Desired solution:
 $W(x) = \begin{cases}
 \text{if } x \geq 0 \text{ and } x \text{ even then } 0 \text{ else } \perp
 \end{cases}$

An Ordering of Solutions
• The desired solution is the one in which all the arbitrariness is replaced with non-termination
 - The arbitrary values in a solution are not uniquely determined by the semantics of the code
• We introduce an ordering of semantic functions
• Let $f, g \in \mathbb{Z} \to \mathbb{Z}_\perp$
• Define $f \sqsubseteq g$ as
 $\forall x \in \mathbb{Z}. \ f(x) = \perp \text{ or } f(x) = g(x)$
 - A "smaller" function terminates at most as often, and when it terminates it produces the same result

Alternative Views of Function Ordering
• A semantic function $f \in \mathbb{Z} \to \mathbb{Z}_\perp$ can be written as $S_f \subseteq \mathbb{Z} \times \mathbb{Z}$ as follows:
 $S_f = \{ (x, y) \mid x \in \mathbb{Z}, f(x) = y = \perp \}$
 - A list of the "terminating" values for the function
• If $f \sqsubseteq g$ then
 - $S_f \subseteq S_g$ (and vice versa)
 - We say that g refines f
 - We say that f approximates g
 - We say that g provides more information than f

The "Best" Solution
• Consider again $C[\text{while } x \neq 0 \text{ do } x := x - 2]$
 - Unwinding equation:
 $W(x) = \begin{cases}
 \text{if } x \geq 0 \text{ then } W(x - 2) \text{ else } x
 \end{cases}$
 - Not all solutions are comparable:
 $W(x) = \begin{cases}
 \text{if } x \geq 0 \text{ then } x \text{ even then } 0 \text{ else } 1 \text{ else } 2
 \end{cases}$
 $W(x) = \begin{cases}
 \text{if } x \geq 0 \text{ then } x \text{ even then } 0 \text{ else } \perp \text{ else } 3
 \end{cases}$
 $W(x) = \begin{cases}
 \text{if } x \geq 0 \text{ then } x \text{ even then } 0 \text{ else } \perp \text{ else } \perp
 \end{cases}$
 (last one is least and best)
• Is there always a least solution?
• How do we find it?
• If only we had a general framework for answering these questions ...
Fixed-Point Equations

- Consider the general unwinding equation for while
 \[\text{while } b \text{ do } c = \text{if } b \text{ then } c; \text{ while } b \text{ do } c \text{ else skip} \]
- We define a context \(C \) (command with a hole)
 \[C = \text{if } b \text{ then } c; \text{ \bullet } \text{ else skip} \]
- while \(b \) do \(c = [\text{while } b \text{ do } c] \)
 - The grammar for \(C \) does not contain "while \(b \) do \(c \)"
- We can find such a (recursive) context for any looping construct
 - Consider: \(\text{fact } n = \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact } (n - 1) \)
 - \(C = \lambda x. \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact } (n - 1) \)
 - \(\text{fact } C \) [fact]

Fixed-Point Equations

- The meaning of a context is a semantic functional \(F : (\mathbb{Z} \to \mathbb{Z}_\bot) \to (\mathbb{Z} \to \mathbb{Z}_\bot) \) such that
 \[F (C) = F [w] \]
- For "while": \(C = \text{if } b \text{ then } c; \text{ \bullet } \text{ else skip} \)
 - \(F w x = \text{if } b \text{ then } c \text{ else } w \text{ if } c \text{ else } x \)
 - \(F \) depends only on \([c] \) and \([b] \)
- We can rewrite the unwinding equation for while
 - \(W(x) = \text{if } b \text{ then } W(c) \text{ else } x \)
 - or, \(W x = \text{if } F W x \text{ for all } x \)
 - or, \(W = F W \) (by function equality)

Can We Solve This?

- Good news: the functions \(F \) that correspond to contexts in our language have least fixed points!
- The only way \(F w x \) uses \(w \) is by invoking it
- If any such invocation diverges, then \(F w x \) diverges!
- It turns out: \(F \) is monotonic, continuous
 - Not shown here!

The Fixed-Point Theorem

- If \(F \) is a semantic functional corresponding to a context in our language
 - \(F \) is monotonic and continuous (we assert)
 - For any fixed-point \(G \) of \(F \) and \(k \in \mathbb{N} \), \(P(\lambda x.\bot) \sqsubseteq G \)
 - The least of all fixed points is \(\sqsubseteq \lambda x. P(\lambda x.\bot) \)
- Proof (not detailed in the lecture):
 1. By mathematical induction on \(k \).
 - Base: \(P(\lambda x.\bot) = \lambda x.\bot \sqsubseteq G \)
 - Inductive: \(P^{n+1}(\lambda x.\bot) = \text{if } (P^n(\lambda x.\bot)) \sqsubseteq F(G) = G \)
 2. Suffices to show that \(\sqsubseteq \lambda x. P(\lambda x.\bot) \) is a fixed-point
 - \(F(\sqsubseteq \lambda x. P(\lambda x.\bot)) = \sqsubseteq \lambda x. P(\lambda x.\bot) \)

WHILE Semantics

- We can use the fixed-point theorem to write the denotational semantics of while:
 \[[\text{while } b \text{ do } c] = \sqsubseteq \lambda x. P(\lambda x.\bot) \]
 where \(F x = \text{if } b \text{ then } f (\{c\} x) \text{ else } x \)
- Example: [while true do skip] = \(\lambda x.\bot \)
- Example: [while \(x \neq 0 \text{ then } x := x - 1 \) = \(F (\lambda x.\bot) x = \text{if } x = 0 \text{ then } x \neq 0 \text{ else } \bot \)
 - \(F^1 (\lambda x.\bot) x = \text{if } x = 0 \text{ then } x \neq 0 \text{ else } \bot \)
 - \(F^2 (\lambda x.\bot) x = \text{if } 1 \geq x > 0 \text{ then } 0 \text{ else } \bot \)
 - \(\text{LFP}_F = \text{if } x \geq 0 \text{ then } 0 \text{ else } \bot \)
- Not easy to find the closed form for general LFPs!
Discussion

- We can write the denotational semantics but we cannot always compute it.
 - Otherwise, we could decide the halting problem
 - H is halting for input 0 iff $\left[H \right] (0) \neq \bot$
- We have derived this for programs with one variable
 - Generalize to multiple variables, even to variables ranging over richer data types, even higher-order functions: domain theory

Can You Remember?

Recall: Learning Goals

- DS is compositional
- When should I use DS?
- In DS, meaning is a “math object”
- DS uses \bot (“bottom”) to mean non-termination
- DS uses fixed points and domains to handle while
 - This is the tricky bit

Homework

- Homework 2 Due Today
- Homework 3 Out Today
 - Not as long as it looks - separated out every exercise sub-part for clarity.
 - Your denotational answers must be compositional (e.g., $W_0(\sigma)$ or LFP)
- Read Winskel Chapter 6
- Read Hoare article
- Read Floyd article