Abstract Interpretation
(Galois, Collections, Widening)

Tool Time
- How’s Homework 5 going?
- Get started early
- Compilation problems?
 - See FAQ
 (trivia: what tool brand is this?)

More Power!
- You can handle it!

Review
- We introduced abstract interpretation
- An abstraction mapping from concrete to abstract values
 - Has a concretization mapping which forms a Galois connection
- We’ll look a bit more at Galois connections
- We’ll lift AI from expressions to programs
 - … and we’ll discuss the mythic “widening”

Why Galois Connections?
- We have an abstract domain A
 - An abstraction function \(\beta : \mathbb{Z} \to A \)
 - Induces \(\alpha : \mathcal{P}(\mathbb{Z}) \to A \) and \(\gamma : A \to \mathcal{P}(\mathbb{Z}) \)
- We argued that for correctness
 \[\gamma(a_1 \text{ op } a_2) \supseteq \gamma(a_1) \text{ op } \gamma(a_2) \]
 - We wish for the set on the left to be as small as possible
 - To reduce the loss of information through abstraction
- For each set \(S \subseteq C \), define \(\alpha(S) \) as follows:
 - Pick smallest \(S' \) that includes \(S \) and is in the image of \(\gamma \)
 - Define \(\alpha(S) = \gamma^{-1}(S') \)
 - Then we define: \(a_1 \text{ op } a_2 = \alpha(\gamma(a_1) \text{ op } \gamma(a_2)) \)
- Then \(\alpha \) and \(\gamma \) form a Galois connection

Galois Connections
- A Galois connection between complete lattices \(A \) and \(\mathcal{P}(C) \) is a pair of functions \(\alpha \) and \(\gamma \) such that:
 - \(\gamma \) and \(\alpha \) are monotonic (with the \(\subseteq \) ordering on \(\mathcal{P}(C) \))
 - \(\alpha(\gamma(a)) = a \) for all \(a \in A \)
 - \(\gamma(\alpha(S)) \supseteq S \) for all \(S \in \mathcal{P}(C) \)
More on Galois Connections

• All Galois connections are monotonic
• In a Galois connection one function uniquely and absolutely determines the other

Abstract Interpretation for Imperative Programs

• So far we abstracted the value of expressions
• Now we want to abstract the state at each point in the program
• First we define the concrete semantics that we are abstracting
 - We’ll use a collecting semantics

Collecting Semantics

• Recall
 - A \(\text{state } \sigma \in \Sigma \). Any state \(\sigma \) has type \(\text{Var} \rightarrow \mathbb{Z} \)
 - States vary from program point to program point
• We introduce a set of program points: labels
• We want to answer questions like:
 - Is \(x \) always positive at label \(i \)?
 - Is \(x \) always greater or equal to \(y \) at label \(j \)?
• To answer these questions we’ll construct
 \(C \in \text{Contexts} \). \(C \) has type \(\text{Labels} \rightarrow \mathcal{P}(\Sigma) \)
 - For each label \(i \), \(C(i) \) = all possible states at label \(i \)
 - This is called the collecting semantics of the program
 - This is basically what SLAM and BLAST approximate (using BDDs to store \(\mathcal{P}(\Sigma) \) efficiently)

Defining the Collecting Semantics

• We first define relations between the collecting semantics at different labels
 - We do it for unstructured CFGs (cf. HW5!)
 - Can do it for IMP with careful notion of program points
• Define a label on each edge in the CFG
• For assignment

\[
\begin{align*}
 x := e_i & \rightarrow C_j = \{ \sigma | x := n \mid \sigma \in C_i \land \llbracket e \rrbracket \sigma = n \} \\
\end{align*}
\]

• Assumes \(b \) has no side effects (as in IMP or HW5)

Defining the Collecting Semantics

• For conditionals

\[
\begin{align*}
 \text{false} & \rightarrow \text{else} \\
 \text{true} & \rightarrow \text{then} \\
 C_{\text{else}} & = \{ \sigma | \sigma \in C_{\text{in}} \land \llbracket b \rrbracket \sigma = \text{false} \} \\
 C_{\text{then}} & = \{ \sigma | \sigma \in C_{\text{in}} \land \llbracket b \rrbracket \sigma = \text{true} \} \\
\end{align*}
\]

• For a join

\[
\begin{align*}
 \text{out} & \rightarrow C_{\text{out}} = C_i \cup C_j \\
\end{align*}
\]

• Verify that these relations are monotonic
 - If we increase a \(C_x \) all other \(C_y \) can only increase
Collecting Semantics: Example
• Assume $x \geq 0$ initially

\[
\begin{align*}
1: & \quad y := 1 \\
2: & \quad x := 0 \\
3: & \quad y \leftarrow y \cdot x \\
4: & \quad x := x - 1
\end{align*}
\]

$C_1 = \{ \sigma \mid \sigma(x) \geq 0 \}$
$C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \}$
$C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \}$
$C_4 = \{ \sigma[y:=\sigma(y) \cdot \sigma(x)] \mid \sigma \in C_3 \}$

$C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}$
Why Does This Work?
• We just made a system of recursive equations that are defined largely in terms of themselves
 - e.g., \(C_2 = F(C_4), C_4 = G(C_1), C_3 = H(C_2) \)
• Why do we have any reason to believe that this will get us what we want?

The Collecting Semantics
• We have an equation with the unknown \(C \)
 - The equation is defined by a monotonic and continuous function on the domain \(\text{Labels} \rightarrow \mathcal{P}(\Sigma) \)
• We can use the least fixed-point theorem
 - Start with \(C_0(L) = \emptyset \) (aka \(C_0 = \lambda L. \emptyset \))
 - Apply the relations between \(C_i \) and \(C_j \) to get \(C_1 \) from \(C_0 \)
 - Stop when all \(C_k = C_{k-1} \)
 - Problem: we’ll go on forever for most programs
 - But we know the fixed point exists

Collecting Semantics: Example
• (assume \(x \geq 0 \) initially)

\[
\begin{align*}
C_1 & = \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 & = \{ [y:=y*\sigma(x)] \mid \sigma \in C_1 \} \\
& \cup \{ [x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 & = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_4 & = \{ [y:=y*\sigma(x)] \mid \sigma \in C_3 \}
\end{align*}
\]

Collecting Semantics: Example
• (assume \(x \geq 0 \) initially)

\[
\begin{align*}
C_1 & = \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 & = \{ [y:=y*\sigma(x)] \mid \sigma \in C_1 \} \\
& \cup \{ [x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 & = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_4 & = \{ [y:=y*\sigma(x)] \mid \sigma \in C_3 \}
\end{align*}
\]
Collecting Semantics: Example

- (assume $x \geq 0$ initially)

Abstract: \emptyset

Concrete: $\{ x \geq 0, y = 1 \}$

- $x := x - 1$
- $y := y \times x$

Collecting Semantics: Example

- (assume $x \geq 0$ initially)

Abstract: \emptyset

Concrete: $\{ x \geq 0, y = 1 \}$

- $x := x - 1$
- $y := y \times x$

Abstract Interpretation

- Pick a complete lattice A (abstractions for $P(\Sigma)$)
 - Along with a monotonic abstraction $\alpha : P(\Sigma) \rightarrow A$
 - Alternatively, pick $\beta : \Sigma \rightarrow A$
 - This uniquely defines its Galois connection γ

- Take the relations between C_i and move them to the abstract domain:

 $a : Label \rightarrow A$

 - Assignment
 - Concrete: $C_j = \{ [\sigma[x := n] | \sigma \in C_i \land [e] \sigma = n] \}$
 - Abstract: $a_j = \alpha \{ [\sigma[x := n] | \sigma \in \gamma(a_i) \land [e] \sigma = n] \}$

 - Join
 - Concrete: $C_k = C_i \cup C_j$
 - Abstract: $a_k = \alpha \{ \gamma(a_i) \cup \gamma(a_j) \} = \text{lub} \{ a_i, a_j \}$

Least Fixed Points

In The Abstract Domain

- We have a recursive equation with unknown “a”
 - Defined by a monotonic and continuous function on the domain Labels $\rightarrow A$

- We can use the least fixed-point theorem:
 - Start with $a^0 = \lambda L. \perp$ (aka: $a^0(L) = \perp$)
 - Apply the monotonic function to compute a^{k+1} from a^k
 - Stop when $a^{k+1} = a^k$

- Exactly the same computation as for the collecting semantics
 - What is new?
 - “There is nothing new under the sun but there are lots of old things we don’t know.” — Ambrose Bierce
Least Fixed Points In The Abstract Domain

- We have a hope of termination!
- Classic setup: A has only uninteresting chains (finite number of elements in each chain)
 - A has finite height h (= “finite-height lattice”)
- The computation takes \(O(h \times |Labels|^2)\) steps
 - At each step “a” makes progress on at least one label
 - We can only make progress h times
 - And each time we must compute \(|Labels|\) elements
- This is a quadratic analysis: good news
 - This is exactly the same as Kildall’s 1973 analysis of dataflow’s polynomial termination given a finite-height lattice and monotonic transfer functions.

Abstract Interpretation: Example

- Consider the following program, \(x > 0\)

  ```
  y := 1
  x := 0
  y := y \times x
  x := x - 1
  ```

 We want to do the sign analysis on it.

Abstract Domain for Sign Analysis

- Invent the complete sign lattice \(S = \{\bot, -, 0, +, \top\}\)
- Construct the complete lattice \(A = \{x, y\} \rightarrow S\)
 - With the usual point-wise ordering
 - Abstract state gives the sign for \(x\) and \(y\)
- We start with \(a^0 = \lambda L. \lambda v \in \{x, y\}. \bot\)
 - aka: \(a^0(L, v) = \bot\)

Let’s Do It!

<table>
<thead>
<tr>
<th>Label</th>
<th>Iterations →</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>y</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>x</td>
<td>+ \top</td>
</tr>
<tr>
<td>y</td>
<td>+ \top</td>
</tr>
<tr>
<td>3</td>
<td>+ \top</td>
</tr>
<tr>
<td>y</td>
<td>+ \top</td>
</tr>
<tr>
<td>4</td>
<td>+ \top</td>
</tr>
<tr>
<td>y</td>
<td>+ \top</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>+ \top</td>
</tr>
</tbody>
</table>

Notes, Weaknesses, Solutions

- We abstracted the state of each variable independently
 - \(A = \{x, y\} \rightarrow \{\bot, -, 0, +, \top\}\)
- We lost relationships between variables
 - E.g., at a point \(x\) and \(y\) may always have the same sign
 - In the previous abstraction we get \(\{x := T, y := T\}\) at label 2 (when in fact \(y\) is always positive!)
- We can also abstract the state as a whole
 - \(A = \mathcal{P}(\{\bot, -, 0, +, \top\}) \times \{\bot, -, 0, +, \top\})\)

Other Abstract Domains

- Range analysis
 - Lattice of ranges: \(R = \{\bot, [n..m], (-\infty, m], [n, +\infty), \top\}\)
 - It is a complete lattice
 - \([n..m] \cup [n'..m'] = [\min(n, n'), \max(m, m')]\)
 - \([n..m] \cap [n'..m'] = [\max(n, n'), \min(m, m')]\)
 - With appropriate care in dealing with \(\infty\)
 - \(\beta: \mathbb{Z} \rightarrow R\) such that \(\beta(n) = [n..n]\)
 - \(\alpha: \mathcal{P}(\mathbb{Z}) \rightarrow R\) such that \(\alpha(S) = \text{lub } \{\beta(n) | n \in S\} = [\min(S).\max(S)]\)
 - \(\gamma: R \rightarrow \mathcal{P}(\mathbb{Z})\) such that \(\gamma(r) = \{n | n \in r\}\)
- This lattice has infinite-height chains
 - So the abstract interpretation might not terminate!
Example of Non-Termination

- Consider this (common) program fragment

```plaintext
z := 1
z /= n
z := z + 1
```

We want to do range analysis on it.

Example of Non-Termination

- Consider the sequence of abstract states at point 2
 - \([1..1], [1..2], [1..3], \ldots\)
 - The analysis never terminates
 - Or terminates very late if the loop bound is known statically

- It is time to approximate even more: widening

- We redefine the join (lub) operator of the lattice to ensure that from \([1..1]\) upon union with \([2..2]\) the result is \([1..+\infty]\) and not \([1..2]\)

- Now the sequence of states is
 - \([1..1], [1, +\infty], [1, +\infty] \ldots\)
 - Done (no more infinite chains)

Formal Widening Example

\([1,1] \triangle [1,2] = [1, +\infty]\)

<table>
<thead>
<tr>
<th>Range Analysis on z:</th>
<th>Original x^i</th>
<th>Widened y^i</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0: z := 1;</td>
<td>x^L0 = ⊥</td>
<td>y^L0 = ⊥</td>
</tr>
<tr>
<td>L1: while z<99 do</td>
<td>x^L1 = [1,1]</td>
<td>y^L1 = [1,1]</td>
</tr>
<tr>
<td>L2: z := z+1</td>
<td>x^L2 = [1,1]</td>
<td>y^L2 = [1,1]</td>
</tr>
<tr>
<td>L3: done /* z ≥ 99 */</td>
<td>x^L3 = [2,2]</td>
<td>y^L3 = [2,2]</td>
</tr>
<tr>
<td>L4:</td>
<td>x^L4 = [1,2]</td>
<td>y^L4 = [1, +\infty]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k^i = the jth iterative attempt to compute an abstract value for z at label Lj</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^Lj = ([2, +\infty])</td>
</tr>
<tr>
<td>x^Lj = ([99, +\infty])</td>
</tr>
</tbody>
</table>

Recall lub \(S = ([\min(S), \max(S)]\)

\([1,1] \triangle [1,2] = [1, +\infty]\)

Formal Definition of Widening

(Cousot 16.399 “Abstract Interpretation”, 2005)

- A widening \(\triangleright: (P \times P) \rightarrow P\) on a poset \((P, \sqsubseteq)\) satisfies:
 - \(\forall x, y \in P . \ x \sqsubseteq (x \triangleright y) \land y \sqsubseteq (x \triangleright y)\)
 - For all increasing chains \(x^0 \subseteq x^1 \subseteq \ldots\) the increasing chain \(y^0 \triangleright y^1 \triangleright \ldots\) is not strictly increasing.

- Two different main uses:
 - Approximate missing lubs. (Not for us.)
 - Convergence acceleration. (This is the real use.)

 - A widening operator can be used to effectively approximate an upper bound of the least fixpoint of \(F \in \mathbb{L}\) starting from below when \(\mathbb{L}\) is computer-representable but does not satisfy the ascending chain condition.

Other Abstract Domains

- Linear relationships between variables
 - A convex polyhedron is a subset of \(\mathbb{Z}^k\) whose elements satisfy a number of inequalities:
 \[a_1 x_1 + a_2 x_2 + \ldots + a_k x_k \geq c\]
 - This is a complete lattice; linear programming methods compute lubs

- Linear relationships with at most two variables
 - Convex polyhedra but with \(\leq 2\) variables per constraint
 - Octagons \((x + y \geq c)\) have efficient algorithms

- Modulus constraints (e.g. even and odd)

Abstract Chatter

- AI, Dataflow and Software Model Checking
 - The big three (aside from flow-insensitive type systems) for program analyses

- Are in fact quite related:
 - David Schmidt. Data flow analysis is model checking of abstract interpretation. POPL ’98.

- AI is usually flow-sensitive (per-label answer)

- AI can be path-sensitive (if your abstract domain includes \(\lor\), for example), which is just where model checking uses BDD’s

- Metal, SLAM, ESP, … can all be viewed as AI
Abstract Interpretation
Conclusions

- AI is a very powerful technique that underlies a large number of program analyses
- AI can also be applied to functional and logic programming languages
- There are a few success stories
 - Strictness analysis for lazy functional languages
 - PolySpace for linear constraints
- In most other cases however AI is still slow
- When the lattices have infinite height and widening heuristics are used the result becomes unpredictable

Homework

- Project Proposal Due Today
- Read Pierce Article, pages 1-10 only
- Homework 5 Due Thursday