More Lambda Calculus and Intro to Type Systems

Plan
- Heavy Class Participation
 - Thus, wake up!
- Lambda Calculus
 - How is it related to real life?
 - Encodings
 - Fixed points
- Type Systems
 - Overview
 - Static, Dynamic
 - Safety, Judgments, Derivations, Soundness

Lambda Review
- \(\lambda \)-calculus is a calculus of functions
 \[e := x \mid \lambda x. e \mid e_1 e_2 \]
- Several evaluation strategies exist based on \(\beta \)-reduction
 \[(\lambda x. e) e' \rightarrow_{\beta} [e'/x] e \]
- How does this simple calculus relate to real programming languages?

Functional Programming
- The \(\lambda \)-calculus is a prototypical functional language with:
 - no side effects
 - several evaluation strategies
 - lots of functions
 - nothing but functions (pure \(\lambda \)-calculus does not have any other data type)
- How can we program with functions?
- How can we program with only functions?

Programming With Functions
- Functional programming style is a programming style that relies on lots of functions
- A typical functional paradigm is using functions as arguments or results of other functions
 - Called “higher-order programming”
- Some “impure” functional languages permit side-effects (e.g., Lisp, Scheme, ML, Python)
 - references (pointers), in-place update, arrays, exceptions
 - Others (and by “others” we mean “Haskell”) use monads to model state updates

Variables in Functional Languages
- We can introduce new variables:
 \[\text{let } x = e_1 \text{ in } e_2 \]
 - \(x \) is bound by let
 - \(x \) is statically scoped in (a subset of) \(e_2 \)
- This is pretty much like \((\lambda x. e_2) e_1 \)
- In a functional language, variables are never updated
 - they are just names for expressions or values
 - e.g., \(x \) is a name for the value denoted by \(e_1 \) in \(e_2 \)
- This models the meaning of “let” in math (proofs)
Referential Transparency

- In “pure” functional programs, we can reason equationally, by substitution
 - Called “referential transparency”
 - Let \(x = e_1 \) in \(e_2 \) \(\equiv \) \(\left[e_1/x \right] e_2 \)
- In an imperative language a “side-effect” in \(e_1 \) might invalidate the above equation
- The behavior of a function in a “pure” functional language depends only on the actual arguments
 - Just like a function in math
 - This makes it easier to understand and to reason about functional programs

How Tough Is Lambda?

- How complex (a la CS theory) is it to determine if:
 \[e_1 \rightarrow_{\beta*} e \text{ and } e_2 \rightarrow_{\beta*} e \]

Expressiveness of \(\lambda \)-Calculus

- The \(\lambda \)-calculus is a minimal system but can express
 - data types (integers, booleans, lists, trees, etc.)
 - branching
 - recursion
- This is enough to encode Turing machines
 - We say the lambda calculus is Turing-complete
- Corollary: \(e =_\beta e' \) is undecidable
- Still, how do we encode all these constructs using only functions?
- Idea: encode the “behavior” of values and not their structure

Encoding Booleans in \(\lambda \)-Calculus

- What can we do with a boolean?
 - we can make a binary choice (= “if” statement)
- A boolean is a function that, given two choices, selects one of them:
 - true = \(\lambda x. \lambda y. x \)
 - false = \(\lambda x. \lambda y. y \)
- Example: “if \(\text{true} \) then \(u \) else \(v \)” is \((\lambda x. \lambda y. x) u v \rightarrow_{\beta} (\lambda y. u) v \rightarrow_{\beta} u \)

Encoding Pairs in \(\lambda \)-Calculus

- What can we do with a pair?
 - we can access one of its elements (= “.field access”)
- A pair is a function that, given a boolean, returns the first or second element
 - \(\text{mkpair} \ x \ y \) = \(\lambda b. b \ x \ y \)
 - \(\text{fst} \ p \) = \(\lambda \ b. \ b \ \text{true} \)
 - \(\text{snd} \ p \) = \(\lambda \ b. \ b \ \text{false} \)
- \(\text{fst} (\text{mkpair} \ x \ y) \) \(\rightarrow_{\beta} \text{true} \ x \ y \)
- \(\text{snd} (\text{mkpair} \ x \ y) \) \(\rightarrow_{\beta} \text{false} \ x \ y \)

Encoding Numbers in \(\lambda \)-Calculus

- What can we do with a natural number?
 - What do you, the viewers at home, think?
Encoding Numbers λ-Calculus

- What can we do with a natural number?
 - we can iterate a number of times over some function (= “for loop”)

- A natural number is a function that given an operation f and a starting value s, applies f a number of times to s:

 $0 = \text{def } \lambda f. s.s$

 $1 = \text{def } \lambda f. s. f s$

 $2 = \text{def } \lambda f. s. f (f s)$

- Very similar to List.fold_left and friends

- These are numerals in a unary representation

- Called Church numerals

Computing with Natural Numbers

- The successor function

 $\text{succ } n = \text{def } \lambda f. \lambda s. f (n f s)$

- Addition

 $\text{add } n_1 n_2 = \text{def } n_1 \text{ succ } n_2$

- Multiplication

 $\text{mult } n_1 n_2 = \text{def } n_1 (\text{add } n_2) 0$

- Testing equality with 0

 $\text{iszero } n = \text{def } n (\lambda b. \text{false}) \text{ true}$

- Subtraction

 - Is not instructive, but makes a fun exercise …

Computations Example

- What is the result of the application $\text{add } 0$?

 $(\lambda n_1. \lambda n_2. n_1 \text{ succ } n_2) 0 \rightarrow_{\beta} \lambda n_2. \text{succ } n_2 = \lambda n_2. (\lambda f. \lambda s. f) \text{ succ } n_2 \rightarrow_{\beta} \lambda x. x$

- By computing with functions we can express some optimizations

 - But we need to reduce under the lambda

 - Thus this “never” happens in practice

Toward Recursion

- Given a predicate P, encode the function “find” such that “find $P n$” is the smallest natural number which is larger than n and satisfies P

- Claim: with find we can encode all recursion

 Intuitively, why is this true?

Encoding Recursion

- Given a predicate P encode the function “find” such that “find $P n$” is the smallest natural number which is larger than n and satisfies P

- find satisfies the equation

 $\text{find } p n = \text{if } p n \text{ then } n \text{ else } \text{find } p (\text{succ } n)$

- Define

 $F = \lambda f. \lambda p. \lambda n. (p n) n (f (p (\text{succ } n)))$

- We need a fixed point of F

 $\text{find } = F \text{ find}$

 or

 $\text{find } p n = F \text{ find } p n$
The Fixed-Point Combinator Y

- Let $Y = \lambda F. (\lambda y. F(y y)) (\lambda x. F(x x))$
 - This is called the fixed-point combinator
 - Verify that $Y F$ is a fixed point of F

 $Y F \rightarrow (\lambda y. F(y y)) (\lambda x. F(x x)) F (Y F)$

 Thus $Y F \rightarrow F (Y F)$
 - Given any function in λ-calculus we can compute its fixed-point (w00t! why do we not win here?)
 - Thus we can define “find” as the fixed-point of the function F from the previous slide
 - Essence of recursion is the self-application “y y”

Expressiveness of Lambda Calculus

- Encodings are fun
 - Yes! Yes they are!
- But programming in pure λ-calculus is painful
- So we will add constants (0, 1, 2, ..., true, false, if-then-else, etc.)
- Next we will add types

Still Going!
- One minute break
- Stretch!

Types

- A program variable can assume a range of values during the execution of a program
- An upper bound of such a range is called a type of the variable
 - A variable of type “bool” is supposed to assume only boolean values
 - If x has type “bool” then the boolean expression “not(x)” has a sensible meaning during every run of the program

Typed and Untyped Languages

- **Untyped languages**
 - Do not restrict the range of values for a given variable
 - Operations might be applied to inappropriate arguments. The behavior in such cases might be unspecified
 - The pure λ-calculus is an extreme case of an untyped language (however, its behavior is completely specified)
- **(Statically) Typed languages**
 - Variables are assigned (non-trivial) types
 - A type system keeps track of types
 - Types might or might not appear in the program itself
 - Languages can be explicitly typed or implicitly typed

The Purpose Of Types

- The foremost purpose of types is to prevent certain types of run-time execution errors
- Traditional trapped execution errors
 - Cause the computation to stop immediately
 - And are thus well-specified behavior
 - Usually enforced by hardware
 - e.g., Division by zero, floating point op with a NaN
 - e.g., Dereferencing the address 0 (on most systems)
- Untrapped execution errors
 - Behavior is unspecified (depends on the state of the machine = this is very bad!)
 - e.g., accessing past the end of an array
 - e.g., jumping to an address in the data segment
Execution Errors

- A program is deemed safe if it does not cause untrapped errors.
 - Languages in which all programs are safe are safe languages.
- For a given language we can designate a set of forbidden errors.
 - A superset of the untrapped errors, usually including some trapped errors as well.
 - e.g., null pointer dereference.
- Modern Type System Powers:
 - prevent race conditions (e.g., Flanagan TLDI '05)
 - prevent insecure information flow (e.g., Li POPL '05)
 - prevent resource leaks (e.g., Vault, Weimer)
 - help with generic programming, probabilistic languages, ...
 - ... are often combined with dynamic analyses (e.g., CCured).

Preventing Forbidden Errors - Static Checking

- Forbidden errors can be caught by a combination of static and run-time checking.
- Static checking:
 - Detects errors early, before testing.
 - Types provide the necessary static information for static checking.
 - e.g., ML, Modula-3, Java.
 - Detecting certain errors statically is undecidable in most languages.

Preventing Forbidden Errors - Dynamic Checking

- Required when static checking is undecidable.
 - e.g., array-bounds checking.
- Run-time encodings of types are still used (e.g., Lisp).
- Should be limited since it delays the manifestation of errors.
- Can be done in hardware (e.g. null-pointer).

Safe Languages

- There are typed languages that are not safe ("weakly typed languages").
- All safe languages use types (statica or dynamic).

<table>
<thead>
<tr>
<th></th>
<th>Typed</th>
<th>Untyped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Safe: ML, Java, Ada, C#, Haskell, ...
Unsafe: C, C++, Pascal, ...

- λ-calculus
- Assembly

- We focus on statically typed languages.

Why Typed Languages?

- Development:
 - Type checking catches early many mistakes
 - Reduced debugging time
 - Typed signatures are a powerful basis for design
 - Typed signatures enable separate compilation
- Maintenance:
 - Types act as checked specifications
 - Types can enforce abstraction
- Execution:
 - Static checking reduces the need for dynamic checking
 - Safe languages are easier to analyze statically
 - the compiler can generate better code

Homework

- Read Cardelli article
 - Spread it over the break ...
- Read great works of literature
- Homework 5 Due Today
 - Don’t ruin your Spring Break by having it hanging over you ...
- No Class Next Week (Spring Break!)
 - Next Lecture: Tue Mar 14